

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

Ground Investigations Ireland

Bus Connect Detailed Stage 1 Lot 1

Route 14

National Transport Authority

Ground Investigation Report

March 2021

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

DOCUMENT CONTROL SHEET

Project Title	Bus Connect Detailed Stage 1 Lot 1			
Engineer	Arup			
Client	National Transport Authority			
Project No	9754-07-20 R14			
Document Title	Ground Investigation Report			

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
Α	Draft	P. Cochran	J. Duggan	A. McDonnell	Dublin	30 November 2020
В	Final	P. Cochran	J. Duggan	A. McDonnell	Dublin	21 January 2021
С	Final	P. Cochran	M. Sutton	A. McDonnell	Dublin	08 March 2021

Ground Investigations Ireland Ltd. present the results of the fieldworks and laboratory testing in accordance with the specification and related documents provided by or on behalf of the client. The possibility of variation in the ground and/or groundwater conditions between or below exploratory locations or due to the investigation techniques employed must be taken into account when this report and the appendices inform designs or decisions where such variation may be considered relevant. Ground and/or groundwater conditions may vary due to seasonal, man-made or other activities not apparent during the fieldworks and no responsibility can be taken for such variation. The data presented and the recommendations included in this report and associated appendices are intended for the use of the client and the client's geotechnical representative only and any duty of care to others is excluded unless approved in writing.

GROUND INVESTIGATIONS IRELAND

Geotechnical & Environmental

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

CONTENTS

1.0	Preamble	1
2.0	Overview	
2.1.	Background	
2.2.	Purpose and Scope	
3.0	Subsurface Exploration	2
3.1.	General	
3.2.	Trial Pits	2
3.3.	Surveying	2
3.4.	Laboratory Testing	2
4.0	Ground Conditions	3
4.1.	General	3
4.2.	Groundwater	4
4.3.	Laboratory Testing	4
	Geotechnical Laboratory Testing	
4.3.2.	Chemical Laboratory Testing	4
4.3.3.	Environmental Laboratory Testing	4

APPENDICES

Appendix 1 Site Location Plan
Appendix 2 Trial Pit Records
Appendix 3 Laboratory Testing

1.0 Preamble

On the instructions of Arup, a site investigation was carried out by Ground Investigations Ireland Ltd., in October 2020 at the site of the proposed bus corridor along Route 14: UCD Ballsbridge to Dublin City Centre.

2.0 Overview

2.1. Background

It is proposed to construct a new Bus Connects Core Bus Corridor on several commuter routes into Dublin City Centre. Route 14 is a main commuter route from UCD Ballsbridge to Dublin city centre with high pedestrian, cyclists, and vehicular flows.

2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising trial pitting methods in accordance with the project specification. The scope of the work undertaken for this project included the following:

- Visit project site to observe existing conditions
- Carry out 3 No. Trial Pits to a maximum depth of 2.90m BGL
- · Geotechnical & Environmental Laboratory testing
- Factual Report

3.0 Subsurface Exploration

3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation.

The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

3.2. Trial Pits

The trial pits were excavated using a 3T tracked excavator at the locations shown in the exploratory hole location plan in Appendix 1. The locations were checked using a CAT scan to minimise the potential for encountering services during the excavation. The trial pits were sampled, logged, and photographed by a Geotechnical Engineer/Engineering Geologist prior to backfilling with arisings. Notes were made of any services, inclusions, pit stability, groundwater encountered, and the characteristics of the strata encountered and are presented on the trial pit logs which are provided in Appendix 2 of this Report. R14-TP02 was not excavated due to the proposed location being within the bounds of an active construction site.

3.3. Surveying

The exploratory hole locations have been recorded using a Trimble R10 GNSS System which records the coordinates and elevation of the locations to ITM or Irish National Grid as required by the project specification. The coordinates and elevations are provided on the exploratory hole logs in the appendices of this Report. It was not possible to record the location of R14-TP04 due to the tree canopy.

3.4. Laboratory Testing

Samples were selected from the exploratory holes for a range of geotechnical and environmental testing to assist in the classification of soils and to provide information for the proposed design.

Environmental & Chemical testing as required by the specification, including page the Engineers Ireland Suite E, organic matter content, pH, chloride, and sulphate testing was carried out by Element Materials Technology Laboratory in the UK.

Geotechnical testing consisting of moisture content, Atterberg limits, Particle Size Distribution (PSD), hydrometer was carried out in NMTL's Geotechnical Laboratory in Carlow.

The results of the laboratory testing are included in Appendix 3 of this Report.

4.0 Ground Conditions

4.1. General

The ground conditions encountered during the investigation are summarised below with reference to laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were variable across the site and are generally comprised;

- Topsoil
- Made Ground
- Cohesive Deposits
- Granular Deposits

TOPSOIL: Topsoil was encountered in all the exploratory holes and was present to a maximum depth of 0.30m BGL.

MADE GROUND: Made Ground deposits were encountered beneath the Topsoil in TP01 and TP04 and were present to a depth of between 1.80m and 2.00m BGL. These deposits were described generally as brown or dark brownish grey slightly sandy gravelly Clay or light brown gravelly clayey fine to coarse Sand with occasional or some cobbles and boulders and contained occasional fragments of concrete, red brick, glass, plastic, and wood.

COHESIVE DEPOSITS: Cohesive deposits were encountered beneath the Topsoil in TP03 and were described as *brown sandy gravelly CLAY with occasional cobbles and boulders*. The secondary sand and gravel constituents varied with depth, with granular lenses occasionally present in the glacial till matrix. These deposits had occasional, some or frequent cobble and boulder content where noted on the exploratory hole logs.

GRANULAR DEPOSITS: The granular deposits were encountered below the base of the Made Ground deposits in TP01 and were described as *brownish grey very gravelly fine to coarse SAND with some subangular to subrounded cobbles.* It should be noted that in the trial pit where granular deposits were encountered, experienced instability.

4.2. Groundwater

No groundwater was noted during the investigation however we would point out that these exploratory holes did not remain open for sufficiently long periods of time to establish the hydrogeological regime and groundwater levels would be expected to vary with the time of year, rainfall, nearby construction, and other factors.

4.3. Laboratory Testing

4.3.1. Geotechnical Laboratory Testing

The geotechnical testing carried out on soil samples recovered generally confirm the descriptions on the logs with the primary constituent of the cohesive deposits found to be a CLAY of low to intermediate plasticity. The Particle Size Distribution tests confirm that the cohesive deposits are well-graded with percentages of sands and gravels of 57.6% with fines contents of 42.5%.

The Particle Size Distribution tests confirm that generally the granular deposits are well-graded with percentages of sands and silt/clay typically between 3.1% and 32.60% with a gravel content of typically 44.4% to 62.4%.

4.3.2. Chemical Laboratory Testing

The pH and sulphate testing carried out in TP01 indicate that pH results are near neutral and that the water-soluble sulphate results is low when compared to the guideline values from BRE Special Digest 1:2005. The sample tested classify the soil as a Design Sulphate Level DS-1.

4.3.3. Environmental Laboratory Testing

A number of samples were analysed for a suite of parameters which allows for the assessment of the sampled material in terms of total pollutant content for classification of materials as *hazardous* or *non-hazardous*. The suite also allows for the assessment of the sampled material in terms of suitability for placement at licenced landfills (inert, stable non-reactive, hazardous etc.). The parameter list for the suite includes analysis of the solid samples for arsenic, barium, cadmium, chromium, copper, cyanide, lead, nickel, mercury, zinc, speciated aliphatic and aromatic petroleum hydrocarbons, pH, sulphate, sulphide, moisture content, soil organic matter and an asbestos screen.

The suite also includes those parameters specified in the EU Council Decision establishing criteria for the acceptance of waste at Landfills (Council Decision 2003/33/EC), which for the solid samples are total organic carbon (TOC), speciated aliphatic and aromatic petroleum hydrocarbons, BTEX, phenol, polychlorinated biphenyls (PCB) and PAH.

As part of the suite a leachate is generated from the solid sample, which is analysed for antimony, arsenic, barium, cadmium, chromium, copper, lead, mercury, molybdenum, nickel, selenium, zinc, chloride, fluoride, soluble sulphate, sulphide, phenols, dissolved organic carbon (DOC) and total dissolved solids (TDS). While the laboratory report provides a comparison with the waste acceptance criteria limits it does not provide a waste classification of the material sampled nor does it comment on any potentially hazardous properties of the materials tested. The possibility for contamination, not revealed by the testing undertaken should be borne in mind particularly where Made Ground deposits are present, or the previous site use or location indicate a risk of environmental variation. A waste classification report is recommended to be carried out to provide an interpretation of the laboratory data should any material be required to be disposed of off-site.

The results from the completed laboratory testing are included in Appendix 3 of this report.

APPENDIX 1 - Site Location Plan

APPENDIX 2 – Trial Pit Records

	Groui	nd In	vestigations Iro www.gii.ie	eland	Ltd	Site Bus Connect Detailed Stage	ge 1 Lot 1	Trial Pit Number R14-TP01
Machine: 3	T Tracked Excavator rial Pit		ons L) x 0.40m (W) x 2.90m (D)	Ground	Level (mOD) 5.45	Client National Transport Authori	ty	Job Number 9754-07-20
		Location 718	n 3292.9 E 732116.4 N	Dates 2	1/10/2020	Project Contractor Ground Investigations Irela	and	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Nater
				5.15	- (0.30) - 0.30	Brown slightly sandy slight occasional rootlets		
0.50 0.50 0.50	B ES T				(0.50)	gravelly Clay with some ar	ownish grey slightly sandy s ngular to subangular cobble casional fragments of concr	s,
1.00 1.00	B T			4.65	0.80	MADE GROUND: Brown s Clay with occasional angu rootlets and occasional fra	slightly sandy slightly gravell lar to subangular cobbles, gments of wood.	у
1.00	1			4.15	- - - - - - - - -	MADE GROUND: Light br Sand with some angular to rootlets and occasional fra	own gravelly clayey fine to co o subrounded cobbles, occa ogments of wood	oarse sional
1.50 1.50	B ES				(0.70)			
2.00 2.00	B T			3.45	2.00	Brownish grey very gravel subangular to subrounded subrounded fine to coarse	ly fine to coarse SAND with cobbles. Gravel is subangu	some
2.50 2.50	B ES				(0.90) 			
2.90 2.90	B T			2.55	2.90	Complete at 2.90m		
					- - - - - -			
Plan .						Remarks		
						Trial pit terminated at 2.90m Trial pit unstable No groundwater encountere Trial pit backfilled upon com		ility
						Scale (approx)	Logged By	Figure No. 754-07-20.R14-TP0

	Grou	nd In	vestigations Ire www.gii.ie	land	Ltd	Site Bus Connect Detailed Stage	ge 1 Lot 1	Trial Pit Number R14-TP03
Machine: 3	T Tracked Excavtor	Dimens 2.60m (ions (L) x 0.40m (W) x 1.30m (D)		Level (mOD) 14.39	Client National Transport Authori	ty	Job Number 9754-07-20
		Location 718	n 3522.5 E 730860.8 N	Dates 06	6/10/2020	Project Contractor Ground Investigations Irela	and	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	D	escription	Kate Water
0.50 0.50	B B B B B B B B B B B B B B B B B B B			14.14 13.89 13.64	(0.25) - (0.25) - (0.25) - (0.75 - (0.55)	Firm brown slightly sandy occasional rootlets. Grave coarse Stiff brown slightly sandy s occasional angular to subsrootlets and occasional sh to subrounded fine to coar	I is angular to subrounded fine slightly gravelly CLAY with angular cobbles, occasional ell fragments. Gravel is angula	0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .
Plan .						Remarks Trial pit terminated at 1.30m	BGL due to an obstruction on l	boulders
		•				Trial pit stable No groundwater encountere Trial pit backfilled upon com	d during excavation pletion	
		-				Scale (approx)	Logged By Fi	gure No.
						1:25		4-07-20.R14-TP0

	Grou	nd Inv	vestigations Ire www.gii.ie	land	Ltd	Site Bus Connect Detailed Stag	ge 1 Lot 1	Trial Pit Number R14-TP04
Machine: 37 Method: Tr	T Tracked Excavator ial Pit	Dimensi 2.50m (ons L) x 0.40m (W) x 1.80m (D)	Ground	Level (mOD)	Client National Transport Authori	ty	Job Number 9754-07-20
		Location	1	Dates 06	5/10/2020	Project Contractor Ground Investigations Irela	and	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Kagend Kage
0.50	B ES				(0.25) - (0.25) - 0.25	frequent rootlets	slightly gravelly TOPSOIL wit slightly sandy gravelly Clay wi ar cobbles, occasional boulde casional fragments of concre	
0.50	ES				- - - - - -			
1.00	В				(1.55)			
1.50 1.50	B ES				1.80	Obstruction: Boulders Refusal at 1.80m		
					- - - - - - - - - - - - - - - - - - -			
					- - - - - - - -			
Plan .					•	Remarks Trial pit terminated at 1.80m	BGL due to obstruction on bo	nulders
						Trial pit stable No groundwater encountere Trial pit backfilled upon com Unable to survey trial pit due		value i c
		٠			s	Scale (approx)		Figure No. 54-07-20.R14-TP0

R14 – TP01

R14 – TP01

R14 - TP03

R14 – TP03

R14 – TP04

R14 – TP04

APPENDIX 3 – Laboratory Testing

National Materials Testing Laboratory Ltd. **SUMMARY OF TEST RESULTS** Index Properties Undrained Triaxial Tests Particle Bulk Cell Lab BH/TP Depth sample Moisture Density <425um LL PLЫ Density Presssure Compressive Strain at Vane Remarks Mg/m3 % % % Mg/m3 kPa Stress kPa Failure % kPa No No. R14-TP01 25.8 Non Plastic 2.00 5.4 R14-TP01 2.90 В 6.0 16.0 32 Non Plastic NMTL NMTL 3326 GII Project ID: 9754-07-20 Notes: Job ref No. Bus Connect Toute 14 1. All BS tests carried out using preferred (definitive) method unless otherwise stated. Location

NMTL LTD **Bus Connect Toute 14** Contract: Unit 18c, Tullow Industrial Estate Client: **Ground Investigations Ireland Ltd** Tullow Engineer: **Patrick Cochran County Carlow** GII Project ID 9754-07-20 Date: 20/11/2020 Tel: 00353 59 9180822 Tested By: Sb/Tch/Ms Checked: Bc Mob: 00353 872575508 Job ref No. **NMTL 3326** billa@nmtl.ie High 50-70 Very High Extremely High Low Intermediate 70 0-35 70-90 90 + 35-50 60 Plasticity Index 50 40 30 20 10 0 20 40 60 80 100 120 0 **Liquid Limit**

NMTL Ltd

Sieve	%			
Size mm	Passing			
125.000	100.0			
75.000	83.3			
63.000	77.5			
50.000	74.0			
37.500	70.5			
28.000	63.5			
20.000	57.9			
14.000	49.2			
10.000	44.4			
6.300	38.2			
5.000	37.2			
3.350	36.2			
2.000	33.1			
1.180	28.4			
0.600	20.7			
0.425	16.0			
0.300	11.4			
0.212	8.1			
0.150	6.0			
0.063	3.1			
0.055	3.0			
0.039	2.7			
0.020	2.1			
0.011	1.7			
0.008	1.5			
0.005	1.2			
0.004	0.9			
0.002	0.4			

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

	Clay	Fine Medium Coarse	Fine Medium Coarse	Fine Medium Coarse	Cobbles	Boulder
		Silt	Sand	Gravel		
l	0.4	2.7	30.0	44.4	22.5	0.0

NM

TL

Ltd

Operator

Sample Description Brown/grey slightly silty very sandy GRAVEL with some cobbles.

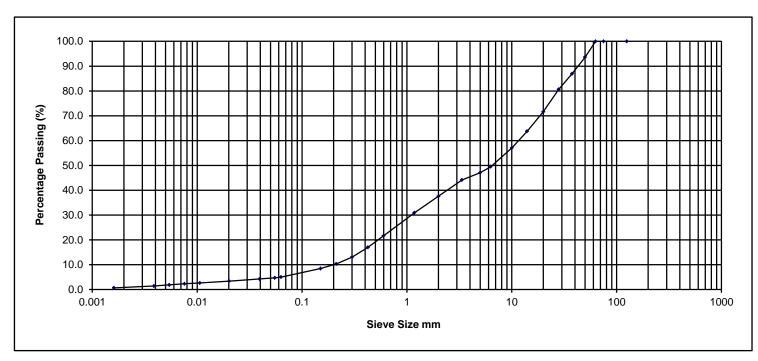
Project No. BH/TP No.

NMTL 3326

Bus Connect Route 14 Project Nc Tzr Checked Approved Bc

GII Project ID-9754-07-20 Date sample tested 18/11/2020 Depth

Sample No.


R14-TP01 В 2.50m

NMTL Ltd

Sieve	%		
Size mm	Passing		
125.000	100.0		
75.000	100.0		
63.000	100.0		
50.000	93.6		
37.500	86.9		
28.000	80.6		
20.000	71.6		
14.000	63.7		
10.000	57.0		
6.300	49.5		
5.000	47.1		
3.350	44.1		
2.000	37.6		
1.180	30.9		
0.600	21.7		
0.425	17.0		
0.300	13.1		
0.212	10.3		
0.150	8.5		
0.063	5.0		
0.055	4.7		
0.039	4.3		
0.020	3.4		
0.011	2.7		
0.008	2.3		
0.005	1.9		
0.004	1.4		
0.002	0.7		
NM			

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

CI	ay Fir	ne Medium Coarse	Fine Medium Coarse	Fine Medium Coarse	Cobbles	Boulder
		Silt	Sand	Gravel		
0.	7	4.3	32.6	62.4	0.0	0.0

Date sample tested

Sample Description Brown/grey slightly silty very sandy GRAVEL.

Project No. BH/TP No. NMTL 3326 R14-TP01

Bus Connect Route 14 Project Ltd Nc Tzr Checked Operator

GII Project ID-9754-07-20

Sample No. 18/11/2020 Depth

В 2.90m

TL

Approved Bc

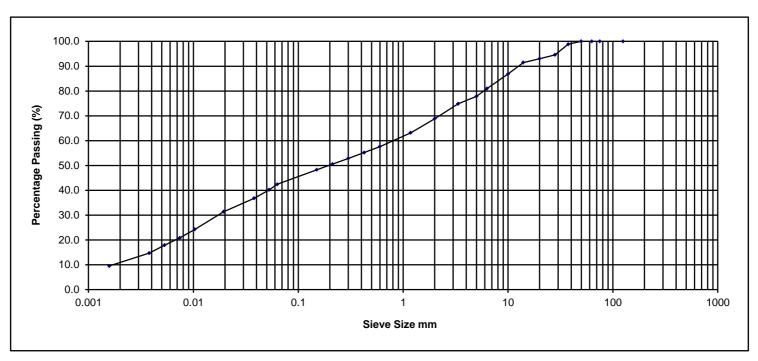
National Materials Testing Laboratory Ltd. **SUMMARY OF TEST RESULTS** Index Properties **Undrained Triaxial Tests** Particle Bulk Cell Lab <425um Compressive BH/TP Depth sample Moisture Density LL PLЫ Density Presssure Strain at Vane Remarks Mg/m3 % % % Mg/m3 kPa Stress kPa Failure % kPa No No. R14-TP03 0.5 25.0 74.9 44 28 16 R14-TP03 1.0 В 11.8 55.2 41 24 17 12.2 R14-TP03 1.3 В 62.3 32 21 11 NMTL NMTL 3326 GII Project ID: 9754-07-20 Job ref No. Notes:

1. All BS tests carried out using preferred (definitive) method unless otherwise stated.

Bus Connect Routes

Location

NMTL Ltd


Sieve	%		
Size mm	Passing		
125.000	100.0		
75.000	100.0		
63.000	100.0		
50.000	100.0		
37.500	98.8		
28.000	94.6		
20.000	93.0		
14.000	91.5		
10.000	86.9		
6.300	81.0		
5.000	77.8		
3.350	74.9		
2.000	68.8		
1.180	63.2		
0.600	57.6		
0.425	55.2		
0.300	52.9		
0.212	50.6		
0.150	48.3		
0.063	42.4		
0.053	40.2		
0.038	36.8		
0.019	31.4		
0.010	24.3		
0.007	20.8		
0.005	17.9		
0.004	14.7		
0.002	9.6		
NM	<u></u>		

TL

Ltd

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine Medium Coarse		e Medium Coarse Fine Medium Coarse Fine Medium Coars		Medium Coarse	Cobbles	Boulder	
		Silt	Sand		Gravel			
9.6		32.9	26.4			31.2	0.0	0.0

Sample Description Brown slightly sandy gravelly silty CLAY

Nc

Project No. BH/TP No.

NMTL 3326 R14-TP03

Project Checked Tzr Operator

Bus connect Route 14 GII Project ID-9754-07-20 Approved Bc Date sample tested

Sample No. 15/12/2020 Depth

В 1.0m

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention: John Duggan

Date: 21st October, 2020

Your reference: 9754-07-20

Our reference : Test Report 20/13792 Batch 1

Location: Bus Connect Route 14

Date samples received: 8th October, 2020

Status: Final report

Issue:

Four samples were received for analysis on 8th October, 2020 of which four were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Phil Sommerton BSc

Senior Project Manager

Please include all sections of this report if it is reproduced

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connect Route 14

Contact: John Duggan EMT Job No: 20/13792

Report : Solid

EMT Job No:	20/13792								-		
EMT Sample No.	1-3	4-6	7-9	10-12							
Sample ID	R14-TP03	R14-TP03	R14-TP04	R14-TP04							
Depth	0.50	1.30	0.50	1.30						e attached n	
COC No / misc									abbievi	alions and a	CIONYINS
Containers	VJT	VJT	VJT	VJT							
Sample Date	06/10/2020	06/10/2020	06/10/2020	06/10/2020							
Sample Type	Soil	Soil	Soil	Soil							
Batch Number	1	1	1	1							Market
Date of Receipt			08/10/2020						LOD/LOR	Units	Method No.
Antimony	2	2	3	2					<1	mg/kg	TM30/PM15
Arsenic #	20.5	11.8	18.4	23.0					<0.5	mg/kg	TM30/PM15
Barium#	144	70	116	94					<1	mg/kg	TM30/PM15
Cadmium#	2.8	2.3	2.1	2.6					<0.1	mg/kg	TM30/PM15
Chromium #	70.8	38.1	57.6	51.7					<0.5	mg/kg	TM30/PM15
Copper#	40	35	46	37					<1	mg/kg	TM30/PM15
Lead #	50	20	104	47					<5	mg/kg	TM30/PM15
Mercury #	<0.1	<0.1	<0.1	<0.1					<0.1	mg/kg	TM30/PM15
Molybdenum #	7.3	4.5	5.3	5.4					<0.1	mg/kg	TM30/PM15
Nickel#	54.3	42.8	44.1	49.7					<0.7	mg/kg	TM30/PM15
Selenium #	1	1	1	<1					<1	mg/kg	TM30/PM15
Zinc#	121	96	144	108					<5	mg/kg	TM30/PM15
PAH MS	0.47	.0.04	<0.04	<0.04					<0.04		TM4/PM8
Naphthalene # Acenaphthylene	0.17 <0.03	<0.04	0.14	<0.04					<0.04	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	0.14	<0.05					<0.05	mg/kg mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04	0.05	<0.04					<0.04	mg/kg	TM4/PM8
Phenanthrene #	0.13	0.20	0.57	0.11					<0.03	mg/kg	TM4/PM8
Anthracene #	0.05	0.05	0.24	<0.04					<0.04	mg/kg	TM4/PM8
Fluoranthene #	0.10	0.04	1.68	0.17					<0.03	mg/kg	TM4/PM8
Pyrene #	0.08	0.04	1.44	0.14					<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	<0.06	<0.06	0.90	0.11					<0.06	mg/kg	TM4/PM8
Chrysene #	0.05	0.03	0.90	0.10					<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	<0.07	<0.07	1.98	0.14					<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	<0.04	<0.04	1.10	0.08					<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene	<0.04	<0.04	0.83	0.06					<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	<0.04	<0.04	0.15	<0.04					<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene # Coronene	<0.04	<0.04 <0.04	0.78	0.06 <0.04					<0.04 <0.04	mg/kg	TM4/PM8 TM4/PM8
PAH 17 Total	<0.04	<0.04	10.95	0.97					<0.64	mg/kg mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05	<0.05	1.43	0.10					<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02	0.55	0.04					<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	92	94	93	101					<0	%	TM4/PM8
Mineral Oil (C10-C40)	<30	<30	<30	<30					<30	mg/kg	TM5/PM8/PM16
		l		l	<u> </u>	<u> </u>	l .		I .		<u> </u>

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connect Route 14

Contact: John Duggan EMT Job No: 20/13792

Report : Solid

EMT Sample No.	1-3	4-6	7-9	10-12						
Sample ID	R14-TP03	R14-TP03	R14-TP04	R14-TP04						
Depth	0.50	1.30	0.50	1.30				Please se	e attached n	otes for all
COC No / misc									ations and a	
Containers	VJT	VJT	VJT	VJT						
Sample Date			06/10/2020							
Sample Type	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1				LOD/LOR	Units	Method
Date of Receipt	08/10/2020	08/10/2020	08/10/2020	08/10/2020						No.
TPH CWG										
Aliphatics										
>C5-C6#	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C6-C8#	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C8-C10 >C10-C12#	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg mg/kg	TM36/PM12 TM5/PM8/PM16
>C10-C12" >C12-C16#	<0.2	<0.2	<0.2	<0.2				<0.2	mg/kg	TM5/PM8/PM16
>C16-C21 #	<7	<7	<7	<7				<7	mg/kg	TM5/PM8/PM16
>C21-C35#	<7	<7	<7	<7				<7	mg/kg	TM5/PM8/PM16
>C35-C40	<7	<7	<7	<7				<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40	<26	<26	<26	<26				<26	mg/kg	TM5/TM36/PM8/PM12/PM16
>C6-C10	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>C10-C25	<10	<10	<10	<10				<10	mg/kg	TM5/PM8/PM16
>C25-C35	<10	<10	<10	<10				<10	mg/kg	TM5/PM8/PM16
Aromatics >C5-EC7#	<0.1	<0.1	<0.1	<0.1				<0.1	ma/ka	TM36/PM12
>C5-EC7 >EC7-EC8#	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg mg/kg	TM36/PM12
>EC8-EC10#	<0.1	<0.1	<0.1	<0.1				<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2	<0.2	<0.2	<0.2				<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 #	<4	<4	<4	<4				<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 #	<7	<7	11	<7				<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 #	<7	<7	75	<7				<7	mg/kg	TM5/PM8/PM16
>EC35-EC40	<7	<7	12	<7				<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40 Total aliphatics and aromatics(C5-40)	<26	<26	98	<26				<26	mg/kg	TM5/TM38/PM8/PM12/PM16 TM5/TM38/PM8/PM12/PM16
>EC6-EC10 #	<52 <0.1	<52 <0.1	98 <0.1	<52 <0.1				<52 <0.1	mg/kg mg/kg	TM36/PM12
>EC10-EC25	<10	<10	29	<10				<10	mg/kg	TM5/PM8/PM16
>EC25-EC35	<10	<10	56	<10				<10	mg/kg	TM5/PM8/PM16
MTBE#	<5	<5	<5	<5				<5	ug/kg	TM36/PM12
Benzene #	<5	<5	<5	<5				<5	ug/kg	TM36/PM12
Toluene #	<5	<5	<5	<5				<5	ug/kg	TM36/PM12
Ethylbenzene #	<5	<5	<5	<5				<5	ug/kg	TM36/PM12
m/p-Xylene #	<5 <5	<5 <5	<5 <5	<5 <5				<5 <5	ug/kg ug/kg	TM36/PM12 TM36/PM12
o-Xylene #	ζ.5	ζ3	ζ.5	ζ,5				ζ,	ug/kg	TIVISO/FIVITZ
PCB 28 #	<5	<5	<5	<5				<5	ug/kg	TM17/PM8
PCB 52 #	<5	<5	<5	<5				<5	ug/kg	TM17/PM8
PCB 101 #	<5	<5	<5	<5				<5	ug/kg	TM17/PM8
PCB 118#	<5	<5	<5	<5				<5	ug/kg	TM17/PM8
PCB 138#	<5	<5	<5	<5				<5	ug/kg	TM17/PM8
PCB 153 #	<5	<5	<5	<5				<5	ug/kg	TM17/PM8
PCB 180 #	<5	<5	<5	<5				<5	ug/kg	TM17/PM8
Total 7 PCBs#	<35	<35	<35	<35				<35	ug/kg	TM17/PM8

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connect Route 14

Contact: John Duggan EMT Job No: 20/13792

Report : Solid

EMT Job No:	20/13792							_		
EMT Sample No.	1-3	4-6	7-9	10-12						
Sample ID	R14-TP03	R14-TP03	R14-TP04	R14-TP04						
Depth	0.50	1.30	0.50	1.30				Please se	e attached n	otos for all
COC No / misc									ations and a	
Containers	VJT	VJT	VJT	VJT						
Sample Date	06/10/2020	06/10/2020	06/10/2020	06/10/2020						
Sample Type	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1						Method
Date of Receipt	08/10/2020	08/10/2020	08/10/2020	08/10/2020				LOD/LOR	Units	No.
Natural Moisture Content	19.5	9.8	12.5	10.8				<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	16.3	8.9	11.1	9.8				<0.1	%	PM4/PM0
Hexavalent Chromium #	<0.3	<0.3	<0.3	<0.3				<0.3	mg/kg	TM38/PM20
Chromium III	70.8	38.1	57.6	51.7				<0.5	mg/kg	NONE/NONE
Total Cyanide #	<0.5	<0.5	<0.5	<0.5				<0.5	mg/kg	TM89/PM45
Total Organic Carbon #	2.40	0.58	2.32	0.96				<0.02	%	TM21/PM24
Loss on Ignition#	6.9	2.8	5.7	3.9				<1.0	%	TM22/PM0
рН#	8.26	8.60	8.40	8.59				<0.01	pH units	TM73/PM11
Mana of row toot portion	0.1092	0.0982	0.1033	0.0997					ka	NONE/PM17
Mass of raw test portion Mass of dried test portion	0.1092	0.0982	0.1033	0.0997					kg kg	NONE/PM17
F									9	
	<u> </u>	Į		<u> </u>			<u> </u>			I

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connect Route 14

Contact: John Duggan EMT Job No: 20/13792

Report: CEN 10:1 1 Batch

	20/13/92									
EMT Sample No.	1-3	4-6	7-9	10-12				Ì		
Sample ID	R14-TP03	R14-TP03	R14-TP04	R14-TP04						
Depth	0.50	1.30	0.50	1.30						
•		1.30	0.50	1.30					e attached n ations and a	
COC No / misc										, .
Containers	VJT	VJT	VJT	VJT						
Sample Date	06/10/2020	06/10/2020	06/10/2020	06/10/2020						
Sample Type	Soil	Soil	Soil	Soil						
Batch Number	1	1	1	1						
								LOD/LOR	Units	Method No.
Date of Receipt								0.000		TA 400 / DA 44 7
Dissolved Antimony #	<0.002 <0.02	<0.002 <0.02	0.003	<0.002 <0.02				<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10) * Dissolved Arsenic *	<0.02	<0.02	<0.0025	<0.02				<0.02 <0.0025	mg/kg mg/l	TM30/PM17
Dissolved Arsenic (A10) #	<0.0025	<0.025	<0.0025	<0.0025				<0.0025	mg/kg	TM30/PM17
Dissolved Barium #	0.004	<0.003	0.007	0.003				<0.003	mg/l	TM30/PM17
Dissolved Barium (A10) #	0.04	<0.03	0.07	<0.03				<0.03	mg/kg	TM30/PM17
Dissolved Cadmium#	<0.0005	<0.0005	<0.0005	<0.0005				<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10) #	<0.005	<0.005	<0.005	<0.005				<0.005	mg/kg	TM30/PM17
Dissolved Chromium #	<0.0015	<0.0015	<0.0015	<0.0015				<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10) #	<0.015	<0.015	<0.015	<0.015				<0.015	mg/kg	TM30/PM17
Dissolved Copper #	<0.007	<0.007	<0.007	<0.007				<0.007	mg/l	TM30/PM17
Dissolved Copper (A10)#	<0.07	<0.07	<0.07	<0.07				<0.07	mg/kg	TM30/PM17
Dissolved Lead #	<0.005	<0.005	<0.005	<0.005				<0.005	mg/l	TM30/PM17
Dissolved Lead (A10)#	<0.05	<0.05	<0.05	<0.05				<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum #	0.006	0.006	0.010	0.013				<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10) #	0.06	0.06	0.10	0.13				<0.02	mg/kg	TM30/PM17
Dissolved Nickel [#]	<0.002	<0.002	<0.002	<0.002				<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10) #	<0.02	<0.02	<0.02	<0.02				<0.02	mg/kg	TM30/PM17
Dissolved Selenium #	<0.003	<0.003	<0.003	<0.003				<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10) #	<0.03	<0.03	<0.03	<0.03				<0.03	mg/kg	TM30/PM17
Dissolved Zinc #	0.005	<0.003	0.005	0.003				<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10) #	0.05	<0.03	0.05	<0.03				<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF#	<0.00001	<0.00001	<0.00001	<0.00001				<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF *	<0.0001	<0.0001	<0.0001	<0.0001				<0.0001	mg/kg	TM61/PM0
Total Phenols HPLC	<0.05	<0.05	<0.05	<0.05				<0.05	mg/l	TM26/PM0
Total Phenois HPLC	<0.5	<0.5	<0.5	<0.5				<0.5	mg/kg	TM26/PM0
									99	
Fluoride	0.7	0.3	0.4	0.4				<0.3	mg/l	TM173/PM0
Fluoride	7	3	4	4				<3	mg/kg	TM173/PM0
									3 0	
Sulphate as SO4#	<0.5	<0.5	0.6	5.8				<0.5	mg/l	TM38/PM0
Sulphate as SO4 #	<5	<5	6	58				<5	mg/kg	TM38/PM0
Chloride #	0.6	<0.3	1.4	3.3				<0.3	mg/l	TM38/PM0
Chloride #	6	<3	14	33				<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	5	2	6	5				<2	mg/l	TM60/PM0
Dissolved Organic Carbon	50	20	60	50				<20	mg/kg	TM60/PM0
Total Dissolved Solids #	83	62	98	87				<35	mg/l	TM20/PM0
Total Dissolved Solids #	830	620	980	870				<350	mg/kg	TM20/PM0
										-
										1

Client Name: Ground Investigations Ireland

Reference: 9754-07-20 Bus Connect Route 14 Location: Contact: John Duggan

Report : EN12457_2

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No:	20/13792												
EMT Sample No.	1-3	4-6	7-9	10-12									
Sample ID	R14-TP03	R14-TP03	R14-TP04	R14-TP04									
Depth	0.50	1.30	0.50	1.30							Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT									
Sample Date				06/10/2020									
-													
Sample Type	Soil	Soil	Soil	Soil									1
Batch Number	1	1	1	1				Inert	Stable Non- reactive	Hazardous	LOD LOR	Units	Method
Date of Receipt	08/10/2020	08/10/2020	08/10/2020	08/10/2020					reactive				No.
Solid Waste Analysis													
Total Organic Carbon #	2.40	0.58	2.32	0.96				3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025	<0.025	<0.025				6	-	-	<0.025	mg/kg	TM36/PM12
Sum of 7 PCBs#	<0.035	<0.035	<0.035	<0.035				1	-	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30	<30	<30				500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 17	<0.64	<0.64	10.95	0.97				100	-	-	<0.64	mg/kg	TM4/PM8
05114041													
CEN 10:1 Leachate	-0.02E	-0.02E	-0.02E	<0.025				0.5	2	OF.	-0.025	malka	TM20/DM47
Arsenic #	<0.025	<0.025	<0.025 0.07	<0.025				0.5		25 300	<0.025	mg/kg	TM30/PM17 TM30/PM17
Barium #	0.04	<0.03						20 0.04	100		<0.03	mg/kg	TM30/PM17
Cadmium "	<0.005 <0.015	<0.005 <0.015	<0.005 <0.015	<0.005 <0.015				0.04	10	5 70	<0.005 <0.015	mg/kg mg/kg	TM30/PM17
Chromium #	<0.015	<0.015	<0.015	<0.015				2	50	100	<0.015	mg/kg	TM30/PM17
Copper # Mercury #	<0.0001	<0.0001	<0.0001	<0.0001				0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum #	0.06	0.06	0.10	0.13				0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel #	<0.02	<0.02	<0.02	<0.02				0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead #	<0.05	<0.05	<0.05	<0.05				0.5	10	50	<0.05	mg/kg	TM30/PM17
Antimony #	<0.02	<0.02	0.03	<0.02				0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium #	<0.03	<0.03	<0.03	<0.03				0.1	0.5	7	<0.03	mg/kg	TM30/PM17
Zinc#	0.05	<0.03	0.05	<0.03				4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids #	830	620	980	870				4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	50	20	60	50				500	800	1000	<20	mg/kg	TM60/PM0
Mass of raw test portion	0.1092	0.0982	0.1033	0.0997				-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	82.2	91.5	86.8	90.3				-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.881	0.892	0.886	0.89				-	-	-		I	NONE/PM17
Eluate Volume	8.0	0.8	0.8	0.8				-	-	-		I	NONE/PM17
	9.00	0.00	8.40	8.59						_	<0.01	aUi+-	TM73/PM11
pH *	8.26	8.60	8.40	8.59				-	-	-	<0.01	pH units	1W1/3/PW11
Fluoride	7	3	4	4				-	-	-	<3	mg/kg	TM173/PM0
Sulphate as SO4 "	<5	<5	6	58				1000	20000	50000	<5	mg/kg	TM38/PM0
Chloride #	6	<3	14	33				800	15000	25000	<3	mg/kg	TM38/PM0
Simonac	ľ		· · ·	30				-500	. 2000			9'''9	
		1	1						1				1

Client Name: Ground Investigations Ireland

Reference: 20/07/9754

Location: Bus Connect Route 14

Contact: John Duggan

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
20/13792	1	R14-TP03	0.50	2	19/10/2020	General Description (Bulk Analysis)	Soil/Stone
					19/10/2020	Asbestos Fibres	NAD
					19/10/2020	Asbestos ACM	NAD
					19/10/2020	Asbestos Type	NAD
					19/10/2020	Asbestos Level Screen	NAD
20/13792	1	R14-TP03	1.30	5	19/10/2020	General Description (Bulk Analysis)	Soil/Stone
					19/10/2020	Asbestos Fibres	NAD
					19/10/2020	Asbestos ACM	NAD
					19/10/2020	Asbestos Type	NAD
					19/10/2020	Asbestos Level Screen	NAD
20/13792	1	R14-TP04	0.50	8	19/10/2020	General Description (Bulk Analysis)	Soil/Stone
					19/10/2020	Asbestos Fibres	NAD
					19/10/2020	Asbestos ACM	NAD
					19/10/2020	Asbestos Type	NAD
					19/10/2020	Asbestos Level Screen	NAD
20/13792	1	R14-TP04	1.30	11	19/10/2020	General Description (Bulk Analysis)	Soil/Stone
					19/10/2020	Asbestos Fibres	NAD
					19/10/2020	Asbestos ACM	NAD
					19/10/2020	Asbestos Type	NAD
					19/10/2020	Asbestos Level Screen	NAD

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connect Route 14

Contact: John Duggan

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason							
	No deviating sample report results for job 20/13792												
						_							

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/13792

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory.

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 20/13792

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

# 13	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA I	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR [Dilution required.
M	MCERTS accredited.
NA N	Not applicable
NAD N	No Asbestos Detected.
ND N	None Detected (usually refers to VOC and/SVOC TICs).
NDP N	No Determination Possible
SS C	Calibrated against a single substance
SV S	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W F	Results expressed on as received basis.
+ A	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
* 4	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD S	Samples are dried at 35°C ±5°C
CO S	Suspected carry over
LOD/LOR L	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME N	Matrix Effect
NFD N	No Fibres Detected
BS A	AQC Sample
LB E	Blank Sample
N C	Client Sample
TB T	Trip Blank Sample
oc (Outside Calibration Range

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes
TM22	Modified BS1377-3:1990 Gravimetric determination of Loss on Ignition by temperature controlled Muffle Furnace (35C-440C). On request modified ASTM D2974-00 LOI (105C-440C)	- PMO	No preparation is required.	Yes		AD	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE re	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE re	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM65	Asbestos Bulk Identification method based on HSG 248 First edition (2006)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide, Sulphide and Thiocyanate analysis.	Yes		AR	Yes
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention: John Duggan

Date: 5th November, 2020

Your reference: 9754-07-20

Our reference: Test Report 20/14655 Batch 1

Location: Bus Connect Route 14

Date samples received: 23rd October, 2020

Status: Final report

Issue: 1

Three samples were received for analysis on 23rd October, 2020 of which three were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Phil Sommerton BSc

Senior Project Manager

Please include all sections of this report if it is reproduced

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connect Route 14

Contact: John Duggan EMT Job No: 20/14655

Report : Solid

EMT Job No:	20/14655					 	 	 -		
EMT Sample No.	1-3	4-6	7-9							
Sample ID	R14-TP01	R14-TP01	R14-TP01							
								•		
Depth	0.50	1.50	2.50					3	e attached n	
COC No / misc								abbievi	ations and a	cionyms
Containers	VJT	VJT	VJT							
Sample Date	21/10/2020	21/10/2020	21/10/2020							
Sample Type	Soil	Soil	Soil					İ		
Batch Number	1	1	1							Mathad
Date of Receipt	23/10/2020	23/10/2020	23/10/2020					LOD/LOR	Units	Method No.
Antimony	3	1	<1					<1	mg/kg	TM30/PM15
Arsenic#	29.2	14.1	8.3					<0.5	mg/kg	TM30/PM15
Barium#	95	45	28					<1	mg/kg	TM30/PM15
Cadmium #	1.2	1.0	0.8					<0.1	mg/kg	TM30/PM15
Chromium#	167.7	38.1	65.0					<0.5	mg/kg	TM30/PM15
Copper#	54	19	14					<1	mg/kg	TM30/PM15
Lead #	117	40	11					<5	mg/kg	TM30/PM15
Mercury #	0.6	<0.1	<0.1					<0.1	mg/kg	TM30/PM15
Molybdenum#	2.3	1.5	0.9					<0.1	mg/kg	TM30/PM15
Nickel #	34.4	25.7	16.8					<0.7	mg/kg	TM30/PM15
Selenium#	2	1	<1					<1	mg/kg	TM30/PM15
Zinc [#]	113	59	48					<5	mg/kg	TM30/PM15
PAH MS										
Naphthalene #	0.05	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05					<0.05	mg/kg	TM4/PM8
Fluorene#	<0.04	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Phenanthrene#	0.33	0.04	<0.03					<0.03	mg/kg	TM4/PM8
Anthracene #	0.06	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Fluoranthene#	0.71	0.07	0.04					<0.03 <0.03	mg/kg	TM4/PM8 TM4/PM8
Pyrene # Benzo(a)anthracene #	0.60	0.09	<0.06					<0.06	mg/kg mg/kg	TM4/PM8
Chrysene #	0.53	0.06	0.03					<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene#	0.96	0.08	<0.07					<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	0.47	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene	0.33	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene#	0.09	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene#	0.37	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Coronene	0.09	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
PAH 17 Total	5.24	<0.64	<0.64					<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	0.69	0.06	<0.05					<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	0.27	0.02	<0.02					<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	87	88	84					<0	%	TM4/PM8
Mineral Oil (C10-C40)	<30	<30	<30					<30	mg/kg	TM5/PM8/PM16
		<u> </u>	l	l	L		J.			

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connect Route 14

Contact: John Duggan EMT Job No: 20/14655

Report : Solid

LWIT JOB NO.	20/14033											
EMT Sample No.	1-3	4-6	7-9									
Sample ID	R14-TP01	R14-TP01	R14-TP01									
Depth	0.50	1.50	2.50							Please se	e attached n	otes for all
COC No / misc										3	ations and a	
Containers	VJT	VJT	VJT							1		
Sample Date	21/10/2020	21/10/2020	21/10/2020							l		
	Soil	Soil	Soil							1		
Sample Type												
Batch Number	1	1	1							LOD/LOR	Units	Method No.
Date of Receipt	23/10/2020	23/10/2020	23/10/2020									140.
TPH CWG												
Aliphatics	<0.1	<0.1	<0.1							<0.1	mg/kg	TM36/PM12
>C5-C6 >C6-C8#	<0.1	<0.1	<0.1							<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	<0.1	<0.1							<0.1	mg/kg	TM36/PM12
>C10-C12#	<0.2	<0.2	<0.2							<0.2	mg/kg	TM5/PM8/PM16
>C12-C16#	<4	<4	<4							<4	mg/kg	TM5/PM8/PM16
>C16-C21#	<7	<7	<7							<7	mg/kg	TM5/PM8/PM16
>C21-C35#	22	<7	<7							<7	mg/kg	TM5/PM8/PM16
>C35-C40	<7	<7	<7							<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40	<26	<26	<26							<26	mg/kg	TMS/TMS6/PM6/PM12/PM16
>C6-C10	<0.1	<0.1	<0.1							<0.1	mg/kg	TM36/PM12
>C10-C25	<10	<10	<10							<10	mg/kg	TM5/PM8/PM16
>C25-C35	26	<10	<10							<10	mg/kg	TM5/PM8/PM16
Aromatics >C5-EC7#	<0.1	<0.1	<0.1							<0.1	mg/kg	TM36/PM12
>C5-EC7 >EC7-EC8 [#]	<0.1	<0.1	<0.1							<0.1	mg/kg	TM36/PM12
>EC8-EC10#	<0.1	<0.1	<0.1							<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2	<0.2	<0.2							<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16#	<4	<4	<4							<4	mg/kg	TM5/PM8/PM16
>EC16-EC21#	10	<7	<7							<7	mg/kg	TM5/PM8/PM16
>EC21-EC35#	77	<7	<7							<7	mg/kg	TM5/PM8/PM16
>EC35-EC40	10	<7	<7							<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40	97	<26	<26							<26	mg/kg	TMS/TMS6/PM6/PM12/PM16
Total aliphatics and aromatics(C5-40)	97	<52	<52							<52	mg/kg	TMS/TMS6/PMM/PM12/PM16
>EC6-EC10#	<0.1	<0.1	<0.1							<0.1	mg/kg	TM36/PM12
>EC10-EC25 >EC25-EC35	32 64	<10 <10	<10 <10							<10 <10	mg/kg mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
- 2020 2000	04	×10	~10							\10	g/kg	I WOF WIO
MTBE#	<5	<5	<5							<5	ug/kg	TM36/PM12
Benzene#	<5	<5	<5							<5	ug/kg	TM36/PM12
Toluene #	<5	<5	<5							<5	ug/kg	TM36/PM12
Ethylbenzene#	<5	<5	<5							<5	ug/kg	TM36/PM12
m/p-Xylene#	<5	<5	<5							<5	ug/kg	TM36/PM12
o-Xylene [#]	<5	<5	<5							<5	ug/kg	TM36/PM12
_												
PCB 28#	<5	<5	<5							<5	ug/kg	TM17/PM8
PCB 52#	<5 <5	<5 <5	<5 -5							<5 <5	ug/kg	TM17/PM8
PCB 101#	<5 <5	<5 <5	<5 <5							<5 <5	ug/kg	TM17/PM8 TM17/PM8
PCB 118# PCB 138#	<5 <5	<5 <5	<5 <5							<5 <5	ug/kg ug/kg	TM17/PM8
PCB 138** PCB 153#	<5 <5	<5	<5 <5							<5	ug/kg	TM17/PM8
PCB 153 PCB 180 [#]	<5	<5	<5							<5	ug/kg	TM17/PM8
Total 7 PCBs [#]	<35	<35	<35							<35	ug/kg	TM17/PM8
				I	l	I	I		1		1 33	

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connect Route 14

Contact: John Duggan EMT Job No: 20/14655

Report : Solid

ENT 300 NO.	20/14033			 	 	 	 -		
EMT Sample No.	1-3	4-6	7-9						
Sample ID	R14-TP01	R14-TP01	R14-TP01						
Depth	0.50	1.50	2.50				Please se	e attached n	otes for all
COC No / misc								ations and a	
Containers	VJT	VJT	VJT						
Sample Date	21/10/2020	21/10/2020	21/10/2020						
Sample Type	Soil	Soil	Soil						
Batch Number	1	1	1						Method
Date of Receipt	23/10/2020	23/10/2020	23/10/2020				LOD/LOR	Units	No.
Natural Moisture Content	22.6	11.9	3.7				<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	18.5	10.7	3.6				<0.1	%	PM4/PM0
	-0.3	-0.3	<0.3				-0.3	mallea	TM38/PM20
Hexavalent Chromium # Chromium III	<0.3 167.7	<0.3 38.1	65.0				<0.3 <0.5	mg/kg mg/kg	NONE/NONE
								3 3	
Total Cyanide [#]	<0.5	<0.5	<0.5				<0.5	mg/kg	TM89/PM45
Total Organic Carbon #	3.11	0.72	0.22				<0.02	%	TM21/PM24
Loss on Ignition#	7.3	2.5	<1.0				<1.0	%	TM22/PM0
pH#	8.36	8.51	8.97				<0.01	pH units	TM73/PM11
Mass of raw test portion	0.1094	0.1025	0.0933					kg	NONE/PM17
Mass of dried test portion	0.09	0.09	0.09					kg	NONE/PM17

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connect Route 14

Contact: John Duggan EMT Job No: 20/14655

Report: CEN 10:1 1 Batch

							_		
EMT Sample No.	1-3	4-6	7-9						
Sample ID	R14-TP01	R14-TP01	R14-TP01						
Depth	0.50	1.50	2.50				Please se	e attached n	otes for all
COC No / misc								ations and a	
Containers	VJT	VJT	VJT						
Sample Date									
-							1		
Sample Type	Soil	Soil	Soil						
Batch Number	1	1	1				LOD/LOR	Units	Method No.
Date of Receipt	23/10/2020	23/10/2020	23/10/2020						INO.
Dissolved Antimony#	0.002	<0.002	<0.002				<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10)#	<0.02	<0.02	<0.02				<0.02	mg/kg	TM30/PM17
Dissolved Arsenic#	0.0030	<0.0025	<0.0025				<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10) #	0.030	<0.025	<0.025				<0.025	mg/kg	TM30/PM17
Dissolved Barium#	<0.003	<0.003	<0.003				<0.003	mg/l	TM30/PM17
Dissolved Barium (A10)#	<0.03	<0.03	<0.03				<0.03	mg/kg	TM30/PM17
Dissolved Cadmium#	<0.0005	<0.0005	<0.0005				<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10)#	<0.005	<0.005	<0.005				<0.005	mg/kg	TM30/PM17
Dissolved Chromium#	<0.0015	<0.0015	<0.0015				<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10)#	<0.015	<0.015	<0.015				<0.015	mg/kg	TM30/PM17
Dissolved Copper#	<0.007	<0.007	<0.007				<0.007	mg/l	TM30/PM17
Dissolved Copper (A10) #	<0.07	<0.07	<0.07				<0.07	mg/kg	TM30/PM17
Dissolved Lead #	<0.005	<0.005	<0.005				<0.005	mg/l	TM30/PM17
Dissolved Lead (A10)#	<0.05	<0.05	<0.05				<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum#	0.003	0.006	0.003				<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10) #	0.03	0.06	0.03				<0.02	mg/kg	TM30/PM17
Dissolved Nickel #	<0.002	<0.002	<0.002				<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10)#	<0.02	<0.02	<0.02				<0.02	mg/kg	TM30/PM17
Dissolved Selenium#	<0.003	<0.003	<0.003				<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10)#	<0.03	<0.03	<0.03				<0.03	mg/kg	TM30/PM17
Dissolved Zinc#	<0.003	<0.003	<0.003				<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10)#	<0.03	<0.03	<0.03				<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF#	0.00001	<0.00001	<0.00001				<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF#	<0.0001	<0.0001	<0.0001				<0.0001	mg/kg	TM61/PM0
Total Phenols HPLC	<0.05	<0.05	<0.05				<0.05	mg/l	TM26/PM0
Total Phenols HPLC	<0.5	<0.5	<0.5				<0.5	mg/kg	TM26/PM0
Fluoride	<0.3	<0.3	<0.3				<0.3	mg/l	TM173/PM0
Fluoride	<3	<3	<3				<3	mg/kg	TM173/PM0
Sulphate as SO4#	<0.5	<0.5	<0.5				<0.5	mg/l	TM38/PM0
Sulphate as SO4 Sulphate as SO4	<5	<5	<5				<5	mg/kg	TM38/PM0
Chloride #	<0.3	<0.3	<0.3				<0.3	mg/l	TM38/PM0
Chloride #	<3	<3	<3				<3	mg/kg	TM38/PM0
	· ··								
Dissolved Organic Carbon	3	<2	7				<2	mg/l	TM60/PM0
Dissolved Organic Carbon	30	<20	70				<20	mg/kg	TM60/PM0
Total Dissolved Solids#	58	43	<35				<35	mg/l	TM20/PM0
Total Dissolved Solids#	580	430	<350				<350	mg/kg	TM20/PM0

Client Name: Ground Investigations Ireland

Reference: 9754-07-20 Bus Connect Route 14 Location: John Duggan 20/14655

Report : EN12457_2

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Contact: EMT Job No:

EMT Sample No.	1-3	4-6	7-9										
Sample ID	R14-TP01	R14-TP01	R14-TP01										
Depth	0.50	1.50	2.50									e attached n	
COC No / misc											abbievi	ations and a	cionyms
Containers	VJT	VJT	VJT										
Sample Date	21/10/2020	21/10/2020	21/10/2020										
Sample Type	Soil	Soil	Soil										
Batch Number	1	1	1										Method
Date of Receipt			23/10/2020					Inert	Stable Non- reactive	Hazardous	LOD LOR	Units	No.
Solid Waste Analysis	23/10/2020	23/10/2020	23/10/2020										
	3.11	0.72	0.22					3	5	6	<0.02	%	TM21/PM24
Total Organic Carbon * Sum of BTEX	<0.025	<0.025	<0.025					6	-	-	<0.02		TM36/PM12
												mg/kg	
Sum of 7 PCBs#	<0.035	<0.035	<0.035					1	-	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30	<30					500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 17	5.24	<0.64	<0.64					100	-	-	<0.64	mg/kg	TM4/PM8
0504044													ŀ
CEN 10:1 Leachate	0.000	0.005	0.005					0.5		05	0.005		TM30/PM17
Arsenic #	0.030	<0.025	<0.025					0.5	2	25	<0.025	mg/kg	
Barium#	<0.03	<0.03	<0.03					20	100	300	<0.03	mg/kg	TM30/PM17
Cadmium *	<0.005	<0.005	<0.005					0.04	1	5	<0.005	mg/kg	TM30/PM17
Chromium "	<0.015	<0.015	<0.015					0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper #	<0.07	<0.07	<0.07					2	50	100	<0.07	mg/kg	TM30/PM17
Mercury #	<0.0001	<0.0001	<0.0001					0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum#	0.03	0.06	0.03					0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel #	<0.02	<0.02	<0.02					0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead #	<0.05	<0.05	<0.05					0.5	10	50	<0.05	mg/kg	TM30/PM17
Antimony #	<0.02	<0.02	<0.02					0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium #	<0.03	<0.03	<0.03					0.1	0.5	7	<0.03	mg/kg	TM30/PM17
Zinc #	<0.03	<0.03	<0.03					4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids #	580	430	<350					4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	30	<20	70					500	800	1000	<20	mg/kg	TM60/PM0
Mass of raw test portion	0.1094	0.1025	0.0933					-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	82.0	88.2	96.4					-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.88	0.888	0.897					-	-	-		I	NONE/PM17
Eluate Volume	0.8	0.85	0.8					-	-	-		I	NONE/PM17
pH#	8.36	8.51	8.97					-	-	-	<0.01	pH units	TM73/PM11
Fluoride	<3	<3	<3					-	-	-	<3	mg/kg	TM173/PM0
riuoride	<3	<3	<3					-	-	-	<3	mg/kg	TMT73/PMU
Sulphate as SO4 #	<5	<5	<5					1000	20000	50000	<5	mg/kg	TM38/PM0
	<3	<3	<3					800	15000	25000	<3		TM38/PM0
Chloride #	\3	ζ3	7.3					300	13000	23000		mg/kg	TIVIOU/FIVIU
													}
													}
													-
													}
													-
													}
		1	1		l		l		1				

Client Name: Ground Investigations Ireland

Reference: 20/07/9754

Location: Bus Connect Route 14

Contact: John Duggan

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
20/14655	1	R14-TP01	0.50	2	03/11/2020	General Description (Bulk Analysis)	Soil/Stones
					03/11/2020	Asbestos Fibres	NAD
					03/11/2020	Asbestos ACM	NAD
					03/11/2020	Asbestos Type	NAD
					03/11/2020	Asbestos Level Screen	NAD
20/14655	1	R14-TP01	1.50	5	03/11/2020	General Description (Bulk Analysis)	Soil/Stones
					03/11/2020	Asbestos Fibres	NAD
					03/11/2020	Asbestos ACM	NAD
					03/11/2020	Asbestos Type	NAD
					03/11/2020	Asbestos Level Screen	NAD
20/14655	1	R14-TP01	2.50	8	03/11/2020	General Description (Bulk Analysis)	Soil/Stone
					03/11/2020	Asbestos Fibres	NAD
					03/11/2020	Asbestos ACM	NAD
					03/11/2020	Asbestos Type	NAD
					03/11/2020	Asbestos Level Screen	NAD

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connect Route 14

Contact: John Duggan

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 20/14655	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/14655

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCl (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 20/14655

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes
TM22	Modified BS1377-3:1990 Gravimetric determination of Loss on Ignition by temperature controlled Muffle Furnace (35C-440C). On request modified ASTM D2974-00 LOI (105C-440C)	PM0	No preparation is required.	Yes		AD	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM65	Asbestos Bulk Identification method based on HSG 248 First edition (2006)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide, Sulphide and Thiocyanate analysis.	Yes		AR	Yes
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention: John Duggan

Date: 17th November, 2020

Your reference: 9754-07-20

Our reference : Test Report 20/15510 Batch 1

Location : Bus Connect Route 14

Date samples received : 9th November, 2020

Status: Final report

Issue: 1

One sample was received for analysis on 9th November, 2020 of which one was scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Phil Sommerton BSc

Senior Project Manager

Please include all sections of this report if it is reproduced $% \left(1\right) =\left(1\right) \left(1$

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connect Route 14

Contact: John Duggan EMT Job No: 20/15510

Report : Solid

LIVIT JOB NO.	20/13310		 	 		 	 _		
EMT Sample No.	1								
Sample ID	R14-TP01								
Depth	2.00						Diagra sa	e attached n	otos for all
COC No / misc							abbrevi	ations and a	cronyms
Containers	Т								
Sample Date	21/10/2020								
Sample Type	Soil								
Batch Number	1						LOD/LOR	Units	Method
Date of Receipt									No.
Chloride (2:1 Ext BRE)#	0.008 0.0059						<0.002 <0.0015	g/l g/l	TM38/PM20
Sulphate as SO4 (2:1 Ext)#	0.0059						<0.0015	g/i	TM38/PM20
Organic Matter	0.5						<0.2	%	TM21/PM24
-11#	8.74						<0.01	pH units	TM73/PM11
pH#	0.74						<0.01	pri units	TIVI/ 3/PIVITT
		•			'		'		

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connect Route 14

Contact: John Duggan

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 20/15510	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/15510

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCl (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 20/15510

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.			AD	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention: John Duggan

Date: 4th December, 2020

Your reference: 9754-07-20

Our reference : Test Report 20/16726 Batch 1

Location : Bus Connect Route 14

Date samples received: 27th November, 2020

Status: Final report

Issue: 1

One sample was received for analysis on 27th November, 2020 of which one was scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Phil Sommerton BSc

Senior Project Manager

Please include all sections of this report if it is reproduced

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connect Route 14

Contact: John Duggan EMT Job No: 20/16726

Report : Solid

ENT SOD NO.						_		
EMT Sample No.	1							
Sample ID	R14-TP03							
Depth	1.00					Please se	e attached n	otes for all
COC No / misc						abbrevi	ations and ad	cronyms
Containers	Т							
Sample Date	06/10/2020							
Sample Type	Soil							
Batch Number	1					LOD/LOR	Units	Method
Date of Receipt								No.
Chloride (2:1 Ext BRE)#	0.009					<0.002	g/l	TM38/PM20
Sulphate as SO4 (2:1 Ext) #	0.0200					<0.0015	g/l	TM38/PM20
Organic Matter	1.1					<0.2	%	TM21/PM24
pH#	8.56					<0.01	pH units	TM73/PM11
				l				

Notification of Deviating Samples

Client Name: Ground Investigations Ireland Matrix : Solid

Reference: 9754-07-20

Location: Bus Connect Route 14

Contact: John Duggan

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
20/16726	1	R14-TP03	1.00	1	Chloride, pH, Sulphate	Sample holding time exceeded prior to receipt

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/16726

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory.

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.:

20/16726

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ос	Outside Calibration Range

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.			AD	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

Ground Investigations Ireland

Bus Connect Detailed Stage 1 Lot 1

Route 15

National Transport Authority

Ground Investigation Report

March 2021

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

DOCUMENT CONTROL SHEET

Project Title	Bus Connect Detailed Stage 1 Lot 1
Engineer	Arup
Client	NTA
Project No	9754-07-20 R15
Document Title	Ground Investigation Report

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
Α	Final	J Duggan	J Duggan	A McDonnell	Dublin	21 January 2021
В	Final	P. Cochran	M. Sutton	A. McDonnell	Dublin	19 March 2021

Ground Investigations Ireland Ltd. present the results of the fieldworks and laboratory testing in accordance with the specification and related documents provided by or on behalf of the client. The possibility of variation in the ground and/or groundwater conditions between or below exploratory locations or due to the investigation techniques employed must be taken into account when this report and the appendices inform designs or decisions where such variation may be considered relevant. Ground and/or groundwater conditions may vary due to seasonal, man-made or other activities not apparent during the fieldworks and no responsibility can be taken for such variation. The data presented and the recommendations included in this report and associated appendices are intended for the use of the client and the client's geotechnical representative only and any duty of care to others is excluded unless approved in writing.

GROUND INVESTIGATIONS IRELAND

Geotechnical & Environmental

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

CONTENTS

1.0	Preamble	.1
2.0	Overview	. 1
2.1.	Background	.1
2.2.	Purpose and Scope	. 1
3.0	Subsurface Exploration	. 2
3.1.	General	. 2
3.2.	Trial Pits	. 2
3.3.	Cable Percussion Boreholes	. 2
3.4.	Surveying	. 3
3.5.	Groundwater Monitoring Installations	. 3
3.6.	Laboratory Testing	. 3
4.0	Ground Conditions	. 4
4.1.	General	.4
4.2.	Groundwater	. 5
4.3.	Laboratory Testing	. 5
4.3.1.	Geotechnical Laboratory Testing	. 5
4.3.2.	Chemical Laboratory Testing	. 5
4.3.3	Environmental Laboratory Testing	. 5

APPENDICES

Appendix 1 Site Location Plan
Appendix 2 Trial Pit Records

Appendix 3 Cable Percussion Borehole Records

Appendix 4 Laboratory Testing

1.0 Preamble

On the instructions of Arup, a site investigation was carried out by Ground Investigations Ireland Ltd., between September and November 2020 at the site of the proposed bus corridor along Route 15: Blackrock to Merrion.

2.0 Overview

2.1. Background

It is proposed to construct a new Bus Connects Core Bus Corridor on several commuter routes into Dublin City Centre. Route 15 is proposed to run between Blackrock and Merrion.

2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising a variety of investigative methods in accordance with the project specification. The scope of the work undertaken for this project included the following:

- Visit project site to observe existing conditions
- Carry out 2 No. Trial Pits to a maximum depth of 2.90m BGL
- Carry out 6 No. Cable Percussion boreholes to a maximum depth of 7.50m BGL
- Installation of 3 No. Groundwater monitoring wells
- Geotechnical & Environmental Laboratory testing
- Factual Report

3.0 Subsurface Exploration

3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing were undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling.

The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

3.2. Trial Pits

The trial pits were excavated using a 3T excavator at the locations shown in the exploratory hole location plan in Appendix 1. The locations were checked using a CAT scan to minimise the potential for encountering services during the excavation. The trial pits were sampled, logged and photographed by a Geotechnical Engineer/Engineering Geologist prior to backfilling with arisings. Notes were made of any services, inclusions, pit stability, groundwater encountered, and the characteristics of the strata encountered and are presented on the trial pit logs which are provided in Appendix 2 of this Report.

3.3. Cable Percussion Boreholes

The Cable Percussion Boreholes were drilled using a Dando 2000 drilling rig with regular in-situ testing and sampling undertaken to facilitate the production of geotechnical logs and laboratory testing.

The standard method of boring in soil for site investigation is known as the Cable Percussion method. It consists of using a Shell in non-cohesive soils and a clay cutter in cohesive soils, both operated on a wire cable. Very hard soils, boulders and other hard obstructions are broken up by chiselling and the fragments removed with the Shell. Where ground conditions made it necessary, the borehole was lined with 200mm diameter steel casing. While the use of the Cable Percussion method of boring gives the maximum data on soil conditions, some mixing of laminated soil is inevitable. For this reason, thin lenses of granular material may not be noticed. Disturbed samples were taken from the boring tools at suitable depths, so that there is a representative sample at the top of each change in stratum and thereafter at regular intervals down the borehole until the next stratum was encountered. The disturbed samples were then sealed and sent to the laboratory where they were visually examined to confirm the description of the relevant strata. Standard Penetration Tests were carried out in the boreholes. The results of these tests, together with the depths at which the tests were taken are shown on the accompanying borehole records. The test consists of a thick wall sampler tube, 50mm external diameter, being driven into the soil by a monkey weighing 63.5kg and with a free drop of 760mm. For gravels and glacial till the driving shoe was replaced by a solid 60° cone. The Standard Penetration Test number referred to as the 'N' value is the number of blows required to drive the tube 300mm, after an initial penetration of 150mm. The number gives a guide to the consistency of the soil and can also be used to estimate the relative strength/density at the depth of the test and also to estimate the bearing capacity and compressibility of the soil. The cable percussion borehole logs are provided in Appendix 3 of this Report. R15-CP01 was not carried out as permission to access the site was not given.

3.4. Surveying

The exploratory hole locations have been recorded using a Trimble R10 GNSS System which records the coordinates and elevation of the locations to ITM or Irish National Grid as required by the project specification. The coordinates and elevations are provided on the exploratory hole logs in the appendices of this Report.

3.5. Groundwater Monitoring Installations

Groundwater monitoring installations were installed upon the completion of the boreholes to enable sampling and the determination of the equilibrium groundwater level. The typical groundwater monitoring installation consists of a 50mm HDPE slotted pipe with a pea gravel response zone and bentonite seal installed to the Engineers specification. The standpipe is finished with a durable steel cover fixed in place with a concrete surround. The installation details are provided on the exploratory hole logs in the appendices of this Report.

3.6. Laboratory Testing

Samples were selected from the exploratory holes for a range of geotechnical and environmental testing to assist in the classification of soils and to provide information for the proposed design.

Environmental & Chemical testing as required by the specification, including the Engineers Ireland Suite E, organic matter content, pH, chloride and sulphate testing was carried out by Element Materials Technology Laboratory in the UK.

Geotechnical testing consisting of moisture content, Atterberg limits, Particle Size Distribution (PSD), hydrometer will be carried out in NMTL's Geotechnical Laboratory in Carlow.

The results of the laboratory testing are included in Appendix 4 of this Report.

4.0 Ground Conditions

4.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were variable across the site and are generally comprised;

- Topsoil
- Surfacing
- Made Ground
- Cohesive Deposits
- Granular Deposits

TOPSOIL: Topsoil was encountered in R15- TP01 and TP02 and in R15-CP04 and CP05 and was present to a maximum depth of 0.6m BGL.

SURFACING: Concrete surfacing was encountered in R15-CP02 to and R15-CP03 to a depth of 0.20m BGL and 0.40m BGL respectively

MADE GROUND: Made Ground deposits were encountered beneath the Topsoil/Surfacing or from ground level in each of the exploratory holes apart from R15-CP04. Where the bottom of the Made Ground was reached it was present to depths of between 1.0m and 2.6m BGL. These deposits were described generally as brown or greyish brown sandy gravelly CLAY with some cobbles and boulders and occasional pieces of concrete, red brick, glass and plastic etc. Occasional granular layers were present within these Made Ground deposits.

COHESIVE DEPOSITS: Cohesive deposits were encountered beneath the Made Ground or Topsoil and were described typically as *brown slightly sandy gravelly CLAY with occasional cobbles and boulders* overlying a *stiff grey or dark grey sandy gravelly CLAY with occasional cobbles and boulders*. The secondary sand and gravel constituents varied across the site and with depth, with granular lenses occasionally present in the glacial till matrix. A layer of *firm dark greyish brown slightly gravelly sandy clayey SILT with some organics and shell fragments* was also encountered in R15-CP06. The strength of the cohesive deposits varied greatly across the site. These deposits had some, occasional or frequent cobble and boulder content where noted on the exploratory hole logs.

GRANULAR DEPOSITS: A layer of *loose greyish brown silty fine to coarse SAND with some shells* was encountered in R15-CP07A. Based on the SPT N values the deposits are loose.

4.2. Groundwater

Groundwater strikes are noted on the exploratory hole logs where they occurred and where possible drilling was suspended for twenty minutes to allow the subsequent rise in groundwater to be recorded. We would point out that these exploratory holes did not remain open for sufficiently long periods of time to establish the hydrogeological regime and groundwater levels would be expected to vary with the tide, time of year, rainfall, nearby construction and other factors. For this reason, standpipes were installed in R15-CP05, CP06 and CP07A to allow the equilibrium groundwater level to be determined.

4.3. Laboratory Testing

4.3.1. Geotechnical Laboratory Testing

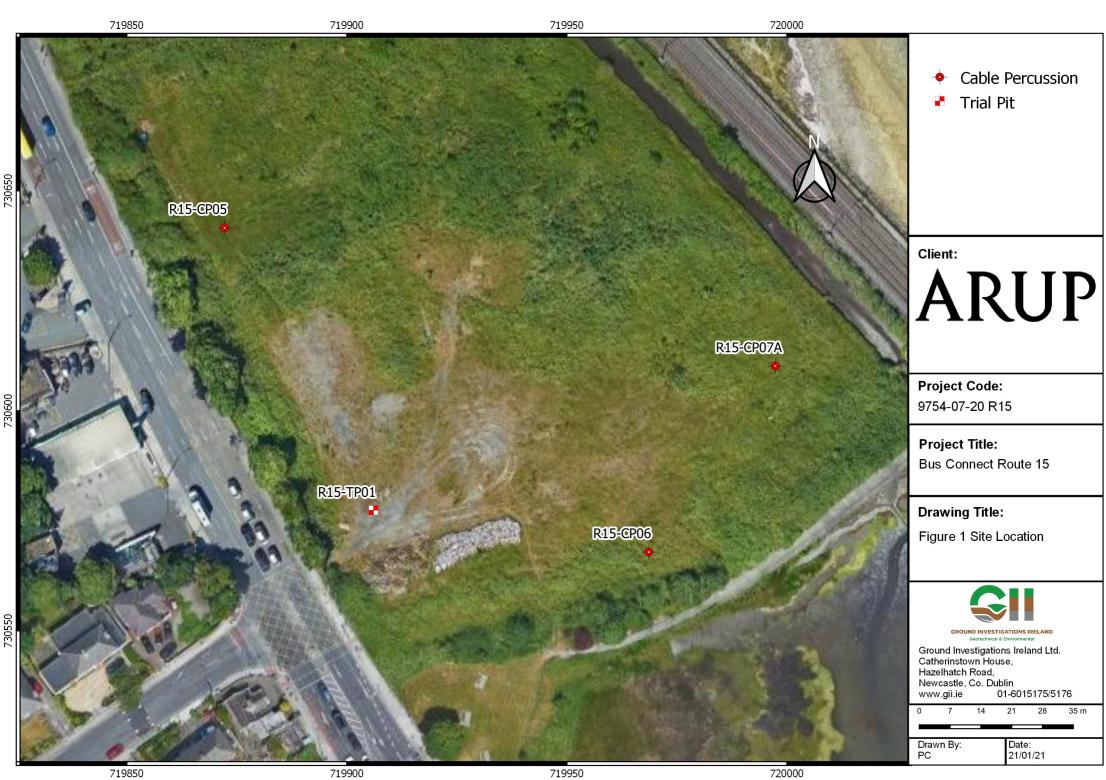
The geotechnical testing carried out on soil samples recovered generally confirm the descriptions on the logs with the primary constituent of the cohesive deposits found to be a CLAY of low to intermediate plasticity. The Particle Size Distribution tests confirm that generally the cohesive deposits are well-graded with percentages of sands and gravels ranging between 58.1% and 49.0% generally with fines contents of 33 to 50.3%.

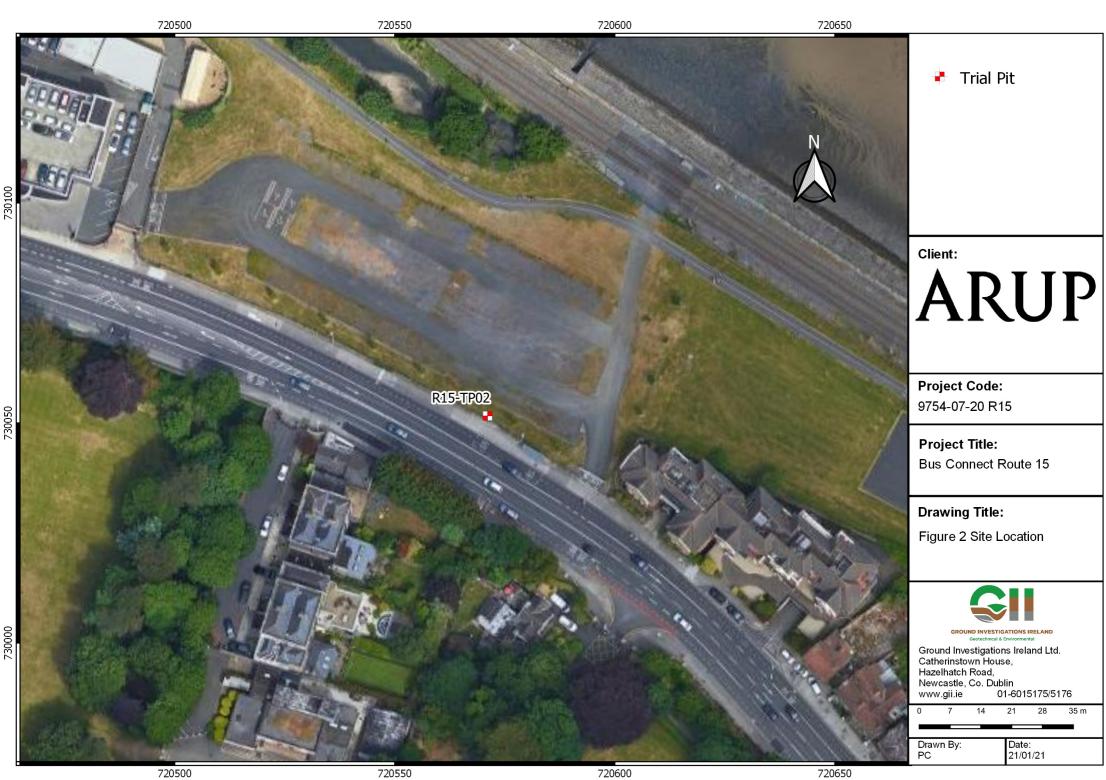
The Particle Size Distribution tests confirm that generally the granular deposits are well-graded with percentages of silt/clay typically between 7.7% and 36.7% with a gravel/sand content of typically 63.1% to 82%.

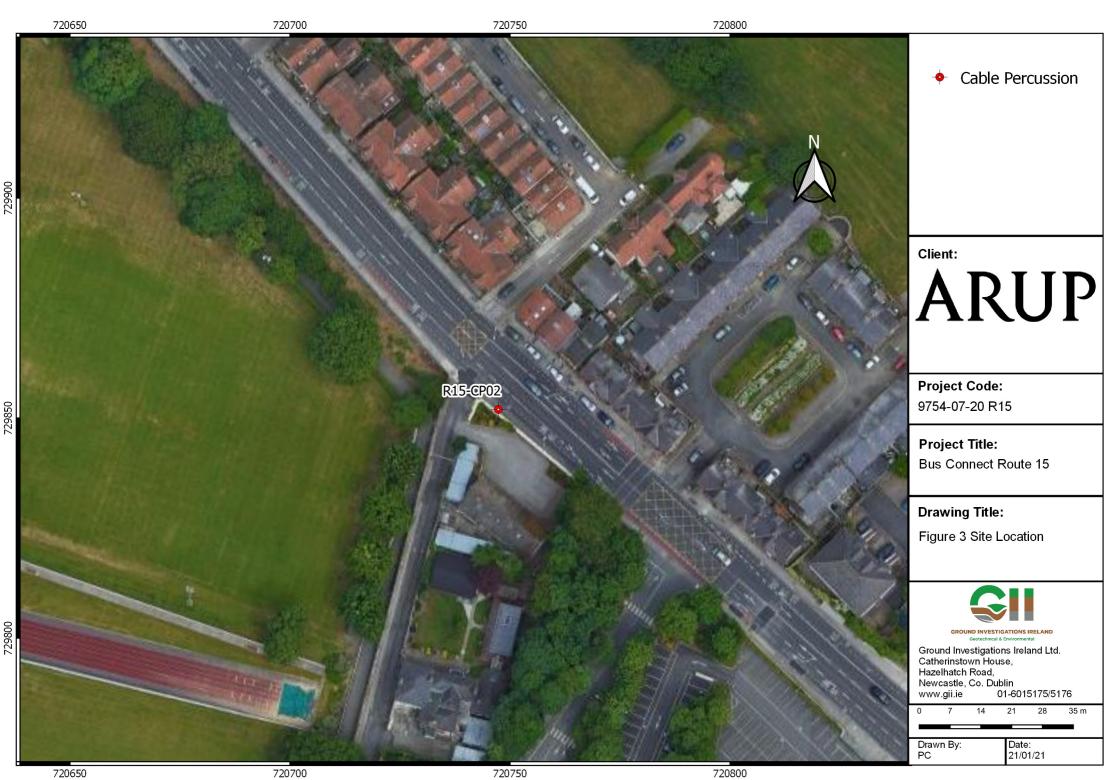
4.3.2. Chemical Laboratory Testing

The pH and sulphate testing carried out indicate that pH results are near neutral and that the water-soluble sulphate results is low when compared to the guideline values from BRE Special Digest 1:2005. The samples tested classify the soil as a Design Sulphate Level DS-1.

4.3.3. Environmental Laboratory Testing


Twenty-five samples were analysed for a Suite of testing specified by ARUP based on suite E according to Engineers Ireland.


The possibility for contamination, not revealed by the testing undertaken should be borne in mind particularly where Made Ground deposits are present, or the previous site use or location indicate a risk of environmental variation.


The results from the completed laboratory testing are included in Appendix 4 of this report.

APPENDIX 1 - Site Location Plan

APPENDIX 2 – Trial Pit Records

	Groui	nd In	vestigatior www.gii.ie		Site Bus Connect Detailed Stage 1 Lot 1 R1:				
Machine: 3 Method: T	T Tracked Excavator	Dimens 1.60m (Level (mOD) 3.88	Client National Transport Authori	ty	Job Number 9754-07-20
		Locatio 71	n 9906 E 730577.2 N		Dates 19	/11/2020	Project Contractor Ground Investigations Irela	and	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Recor	rds	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend safe
					3.78	(0.10) - (0.10) - (0.30)	rootlets MADE GROUND: Greyish subrounded fine to coarse	elly TOPSOIL with occasionary brown sandy clayey angula Gravel with some angular t	ir to
0.50 0.50	EN T				3.48	0.40	concrete, fabric, plastic and MADE GROUND: Greyish Clay with some angular to boulders, rootlets and occ	ets and occasional fragmen d red brick brown slightly sandy gravel subrounded cobbles, occas asional fragments of red brid ar to subangular fine to coal	ly sional
1.00 1.00	B T					(1.40)			
1.50	EN		Fast seepage(1) at	: 1.90m.	2.08	- - - - - - - - - - - - - - - - - - -	MADE GROUND: Greyish subangular fine to coarse subangular cobbles	brown sandy clayey angula Gravel with frequent angula	ır to ☑1
2.00 2.00	B T					(0.50)	ousunguial cossilico		
2.30	EN				1.58	2.30	Complete at 2.30m		
Plan .						•	Remarks Trial pit terminated at 2.30m Trial pit stable	BGL upon encountering of	groundwater
				•			Groundwater encountered a Trial pit backfilled upon com	it 1.90m BGL as fast seepaç pletion	ge
		٠							
						-	Scale (approx)	Logged By	Figure No.
							1:25	PC 9	754-07-20.R15-TP0

	Grou	nd In	vestigations Ire www.gii.ie	Bus Connect Detailed Stage 1 Lot 1 R15-1				
Machine: 3 Method: T	T Tracked Excavator		ions L) x 0.30m (W) x 2.40m (D)	Ground	Level (mOD) 5.10	Client National Transport Authori	ty	Job Number 9754-07-20
		Location 720	n 0571.1 E 730051.4 N	Dates 19	9/11/2020	Project Contractor Ground Investigations Irela	and	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Kater Legend
				4.90	(0.20)	Brown slightly sandy slight occasional rootlets		v
0.50 0.50	EN T				- - - - - - - - - - - - - - - - - - -	Clay with some angular to boulders, rootlets and occ glass, plastic, red brick an subrounded fine to coarse	brown slightly sandy gravell subrounded cobbles, occas asional fragments of ceramid d wood. Gravel is angular to	yonal c,
1.00	ВТ			4.00	1.10	MADE GROUND: Grey sli some angular to subround and occasional fragments red brick and wood. Grave coarse	ghtly sandy gravelly Clay wit ed cobbles, occasional boul of ceramic, glass, metal, pla el is angular to subrounded fi	h ders stic, ne to
1.50	EN							
2.00 2.00	B T							
2.40	EN			2.70	2.40	Complete at 2.40m		
					- - - - - - - - - -			
Plan .						Remarks	DCL due to side well college	
						Trial pit terminated at 2.40m Trial pit unstable; side wall c No groundwater encountere Trial pit backfilled upon com	ollapse below 1.30m BGL	
						Scale (approx)	Logged By	Figure No.
						1:25		754-07-20.R15-TP02

APPENDIX 3 – Cable Percussion Borehole Records

Grou	nd In	vesti ww	gations Ire w.gii.ie	Site Bus Connect Detailed Stage 1 Lot 1		Borehole Number R15-CP02			
Machine: Dando 2000 Method: Cable Percussion		Diameter Omm case	ed to 0.70m	Ground	Level (mOD) 6.68	Client National Transport Authority		Job Number 9754-07	
	Location 720		729851.9 N	Dates 06	6/11/2020	Project Contractor Ground Investigations Ireland		Sheet 1/1	
Depth (m) Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
Remarks Borehole terminated at 0.70m B6 Borehole cannot be moved to ad	GL due to p	presence	of services.	5.98		CONCRETE. MADE GROUND: Brown sandy gravelly Clay. Complete at 0.70m	Scale (approx)	Logge	ed
Borehole cannot be moved to ad No groundwater encountered. Borehole backfilled and footpath	reinstated	ation due	to services, cannot	drill in carr	iageway.		1:50	Tmcl	

	Grou	nd In		gations Ire w.gii.ie	Site Bus Connect Detailed Stage 1 Lot 1	Borehole Number R15-CP03				
Machine : D	Dando 2000 Cable Percussion		Diametei			Level (mOD) 10.67	Client National Transport Authority	Job Number 9754-07-20		
		Locatio		729671.7 N	Dates 05	/11/2020	Project Contractor Ground Investigations Ireland	Sheet 1/1		
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	Description	Vater Page N		
0.50 1.00-1.45 1.00 1.50 2.00-2.45 2.00 2.50 3.00-3.45 3.00 3.50 4.00-4.45 4.00 4.00	EN SPT(C) N=23 T EN SPT(C) N=19 T EN SPT(C) N=17 T EN SPT(C) 50/295 T			2,2/3,4,5,11 1,3/3,5,5,6 1,2/3,3,5,6 2,3/5,6,7,32	10.57 10.37 10.27 9.87 8.97		CONCRETE.			
No groundw	Implete at 4.50mBGL vater encountered. ickfilled and footpath om 4.50m to 4.50m f		I				Scale (approx 1:50 Figure	Tmcl		
							_	-20 R15-CP03		

Grou	nd In	vesti ww	gations Ire w.gii.ie	Ltd	Site Bus Connect Detailed Stage 1 Lot 1	l	Borehole Number R15-CP04		
Machine : Dando 2000 Method : Cable Percussion		Diamete			Level (mOD) 22.98	Client National Transport Authority		Job Numbe 9754-07-	
	Location 72		728860.3 N	Dates 30	/10/2020	Project Contractor Ground Investigations Ireland		Sheet 1/1	
Depth (m) Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
0.50 EN 1.00-1.15 SPT(C) 50/0 1.00 T 1.50 EN 2.00-2.15 SPT(C) 50/0 2.00 T Remarks			19,6/50	22.38	(0.60)	Stiff brown very gravelly CLAY with angular cobbles limestone Obstruction: Large boulder or rockhead Refusal at 2.10m			2
Borehole complete at 2.10m BGL No groundwater encountered. Chiselling from 2.00m to 2.10m for	 or 1 hour.						Scale (approx) 1:50 Figure No. 9754-07-20		

	Grou	nd In		gations Ire w.gii.ie	Ltd	Site Bus Connect Detailed Stage 1 Lot 1		N	Borehole Number R15-CP05	
Machine : D	Pando 2000 Pable Percussion		Diamete			Level (mOD) 3.18	Client National Transport Authority		N	ob umber 54-07-20
		Locatio 719		730641.6 N	Dates 04	/11/2020	Project Contractor Ground Investigations Ireland		SI	heet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.50 1.00-1.45 1.00 1.50 2.00-2.45 2.00 2.50 3.00-3.45 3.00 3.50 4.00-4.07 4.00 4.00	EN SPT(C) N=3 B T EN SPT(C) N=2 B T EN SPT(C) N=27 B T EN SPT(C) 50*/70 B T			1,1/2,0,1,0 1,0/0,1,0,1 1,3/3,7,8,9	2.98 2.18 0.38 -0.82 -1.12	(0.20)	Brown slightly sandy slightly gravelly TOPSOIL. MADE GROUND: Greyish brown slightly sandy slightly gravelly Clay with fragments of red brick. Very soft brownish grey slightly sandy slightly gravelly silty CLAY. Stiff grey slightly sandy gravelly silty CLAY with occasional angular cobbles. Stiff dark grey slightly sandy gravelly CLAY. Obstruction: Large boulder or rockhead Refusal at 4.30m	Scale		ogged
No groundw Standpipe in finished with	ater encountered.	vithgravel		from 3.8m BGL to 2.	3m BGL. F	Plain pipe with	bentonite surround from 2.3m BGL to GL,	1:50 Figure N	lo.	Tmcl

	Grou	nd In		gations Ire w.gii.ie		Site Bus Connect Detailed Stage 1 Lot 1				orehole umber 5-CP06		
Machine : D	Pando 2000 Cable Percussion		Diamete		Ground	Level (n 3.32	nOD)	Client National Transport Authority		N	ob umb	oer 7-20
		Locatio 71		730567.8 N	Dates 24	1/09/2020	0	Project Contractor Ground Investigations Ireland		s	heet	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Dep (m (Thicki	th) ness)	Description	Legend	Water	Ins	str
0.50 0.50 1.00 1.20-1.65 1.50 2.00-2.45 2.00 3.00 3.00-3.45 3.50 3.50	B EN B SPT(C) N=4 B EN B EN B SPT(C) N=14 B EN			3,3/1,1,1,1 1,1/1,1,0,1 Water strike(1) at 3.00m, rose to 2.50m in 20 mins. 1,2/2,3,4,5	-0.48		2.60) - 1.20) - 3.80	Firm dark greyish brown slightly gravelly sandy gravelly fragments Firm dark greyish brown slightly gravelly sandy clayey SILT with some organics and shell fragments. Obstruction: Large boulder or rockhead Refusal at 3.80m		▼ 1		
finished with Borehole co Groundwate	nstalled. Slotted pipe n a raised cover. mpleted at 3.80m B0 or encountered at 3.8 om 3.80m to 3.80m f	GL. Om BGL.		rround from 3.80m to	2.50m BG	SL. Plain	pipe w	vith bentonite surround from 2.50m BGL to GL,	Scale (approx) 1:50 Figure I 9754-07-	No.	JS	

	Grou	nd In	vesti ww	gations Ire w.gii.ie	Site Bus Connect Detailed Stage 1 Lot 1	Nur	Borehole Number R15-CP07				
Machine : D	Dando 2000 Cable Percussion		Diamete 0mm cas	r ed to 1.60m	Ground	Level (mOD) 3.02	Client National Transport Authority	Job Nur 9754	mber	- 1	
		Locatio	n		Dates	/09/2020	Project Contractor	She	eet		
		72	0007.7 E	730606.6 N	2-1	70372020	Ground Investigations Ireland		1/1		
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Lege	∍nd	Water	
0.50 1.00 1.20-1.65 1.50	B SPT(C) N=17 B			3,2/4,4,5,4	1.92	1.10 (0.50)	MADE GROUND: Brown slightly sandy gravelly Clay with occasional sub-angular to sub-rounded cobbles and mortar, wood, rootlets and red brick fragments MADE GROUND: Brown slightly sandy gravelly Clay with mortar and red brick fragments. Obstruction: Large boulder or rockhead Refusal at 1.60m				
No groundw	Impleted at 1.60m Boyater encountered. om 1.60m to 1.60m to						Scale (approx) 1:50 Figure	J	gged JS		
							9754-07-		5-CP	07	

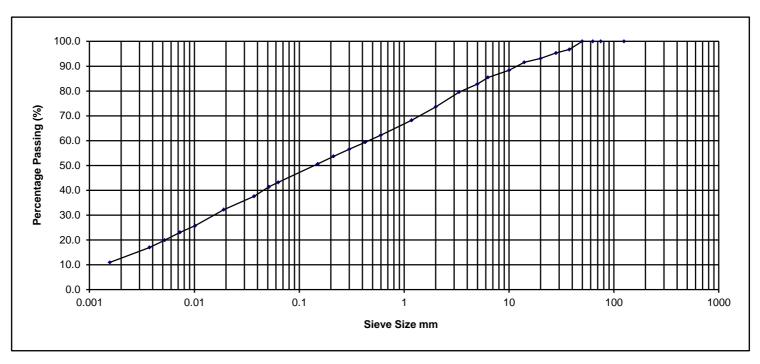
	Grou	nd In		gations Ire w.gii.ie	Site Bus Connect Detailed Stage 1 Lot 1				ole er 07A			
Machine : D	Pando 2000 Cable Percussion		Diamete		Ground	Level	l (mOD)	Client National Transport Authority		N	ob umb 54-07	
		Locatio 71		730610.1 N	Dates 25	5/09/20	020	Project Contractor Ground Investigations Ireland		s	heet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	D (Thic	epth (m) ckness)	Description	Legend	Water	Ins	itr
0.50 0.50 1.00 1.20-1.65 1.50 1.50 2.00-2.45 2.00 2.50 2.50 3.00-3.45 3.00 4.00-4.45 4.00 4.50 5.00-5.45 5.00 6.00-6.35 6.00 7.00-7.35 7.50	B EN B SPT(C) N=11 BEN SPT(C) N=6 BEN SPT(C) N=8 BEN SPT(C) N=35 B SPT(C) N=50 B SPT(C) 50/200 B SPT(C) 50/200 B			1,2/2,2,3,4 1,1/1,1,2,2 Water strike(1) at 2.50m, no rise after 20 mins. 2,3/3,2,2,1 5,6/7,8,9,11 Water strike(2) at 4.10m. 6,8/11,14,16,9 9,11/14,17,19	1.77 0.57 0.37 -0.83		(1.30) 1.30 (1.20) 2.50 (0.20) (1.20) 3.90 (2.60) (1.00) 7.50	MADE GROUND: Brown slightly sandy gravelly Clay with occasional sub-angular cobbles, red brick and mortar fragments. Soft grey slightly sandy gravelly Clay (possible made ground) Soft to firm greyish brown slightly gravelly sandy clayey SILT Loose greyish brown silty fine to coarse SAND with some shells. Very stiff grey slightly sandy gravelly CLAY. Very stiff slightly sandy gravelly CLAY with occasional sub-rounded cobbles and boulders. Obstruction: Large boulder or roackhead Refusal at 7.50m	Scale	▼1		A series of the
Slotted stand cover.	dpipe with pea grave			•	lain pipe w	rith be	ntonite s	real from 2.50m BGL to GL, finished with a raised	Scale (approx)	F	ogge y	d
Groundwate	minated due to boule or encountered at 2.5 om 7.50m to 7.50m f	0m BGL a							1:50	16	JS	
									Figure 1 9754-07-2		5-CP0)7A

APPENDIX 4 – Laboratory Testing

National Materials Testing Laboratory Ltd.

SUMMARY OF TEST RESULTS

				Particle			Index Pro	perties	Bulk	Cell	Undrained Triax	kial Tests	Lab	
BH/TP	Depth	sample	Moisture	Density	<425um	LL	PL	PI	Density	Presssure	Compressive	Strain at	Vane	Remarks
No	m	No.	%	Mg/m3	%	%	%	%	Mg/m3	kPa	Stress kPa	Failure %	kPa	
		_												
R15-CP03	2.0	В	14.5		59.4	33	19	14						
R15-CP03	4.0	В	14.6		63.2	35	18	17						
R15-CP05	2.0	В	16.9		64.0	35	21	14						
R15-CP05	4.0	В	12.8		53.1	31	16	15						
R15-CP06	2.5	В	24.9		54.2	38	28	10						
R15-CP06	3.0	В	42.9		66.8	44	31	13						
R15-CP07A	2.5	В	26.8		67.8	43	30	12						
R15-CP07A	3.5	В	19.1		46.0	28	Non Plast	ic						
R15-CP07A	4.5	В	10.9		61.0	29	16	13						
R15-CP07A	7.0	В	12.6		43.9	25	15	10						
							1							
IMTL		Notes :	<u>, </u>				ļ	<u>!</u>		<u> </u>	Job ref No.	NMTL 3326	GII Project ID:	9754-07-20
			1 All BS to	ests carried	out using p	referred (definitive) r	nethod ur	less otherw	ise stated	Location	Bus Conne		


Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	96.7
28.000	95.3
20.000	93.1
14.000	91.6
10.000	88.4
6.300	85.5
5.000	82.8
3.350	79.6
2.000	73.6
1.180	68.2
0.600	62.2
0.425	59.4
0.300	56.6
0.212	53.7
0.150	50.6
0.063	43.2
0.051	41.4
0.037	37.6
0.019	32.2
0.010	25.7
0.007	23.1
0.005	19.9
0.004	17.0
0.002	11.0
NM	

TL

Ltd

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

ſ	Clay	Fine Mediu	m Coarse Fine	Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		S	Silt	Sand			Gravel		
l	11.0		32.2	30.4			26.4	0.0	0.0

Sample Description Brown slightly gravelly slightly sandy silty CLAY

Project No. BH/TP No.

NMTL 3326 R15-CP03

Operator Tzr

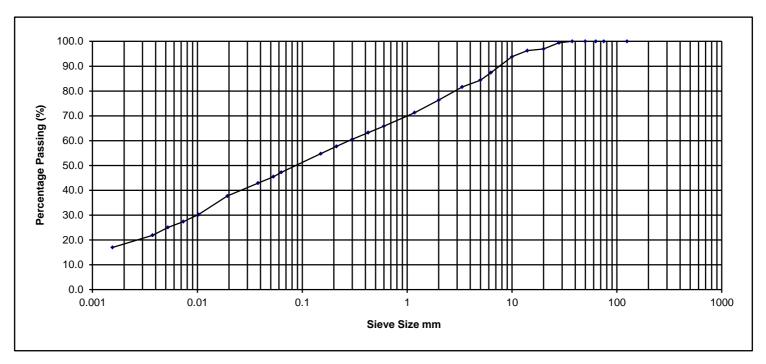
Project Bus connect Route 15

Tzr Checked Nc Approved Bc

GII Project ID-9754-07-20

Date sample tested 15/1:

07-20 Sample No. 15/12/2020 Depth B 2.0m


Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	100.0
28.000	99.4
20.000	97.0
14.000	96.3
10.000	93.8
6.300	87.4
5.000	84.4
3.350	81.6
2.000	76.4
1.180	71.3
0.600	65.8
0.425	63.2
0.300	60.5
0.212	57.7
0.150	54.8
0.063	47.2
0.053	45.5
0.038	42.9
0.019	37.7
0.010	30.2
0.007	27.4
0.005	25.1
0.004	21.9
0.002	17.0
NM	

TL

Ltd

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine N	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
	Silt		Sand		Gravel			
17.0		30.2	29.			23.6	0.0	0.0

Sample Description Brown slightly gravelly slightly sandy silty CLAY

Project No. BH/TP No.

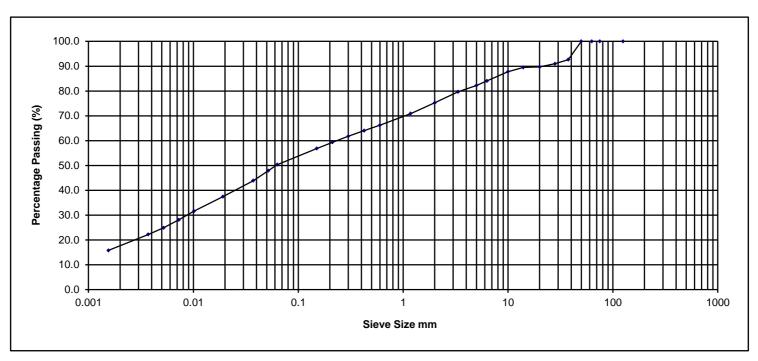
NMTL 3326 R15-CP03

	Projec	t
Operator	Tzr	

pject Bus connect Route 15 GII Project ID-9754-07-20

Checked Nc Approved Bc Date sample tested 15/13

07-20 Sample No. B 15/12/2020 Depth 4.0m


Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	92.6
28.000	91.0
20.000	89.7
14.000	89.5
10.000	87.8
6.300	84.1
5.000	82.2
3.350	79.7
2.000	75.3
1.180	70.9
0.600	66.2
0.425	64.0
0.300	61.8
0.212	59.4
0.150	56.9
0.063	50.3
0.052	47.9
0.037	43.9
0.019	37.5
0.010	31.6
0.007	28.1
0.005	24.9
0.004	22.2
0.002	15.8
NM	

TL

Ltd

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Ī	Clay	Fine Medium	n Coarse Fine	Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
l		Si	lt	Sand			Gravel		
L	15.8	34	l.5	24.9			24.7	0.0	0.0

Sample Description Brown slightly gravelly slightly sandy silty CLAY

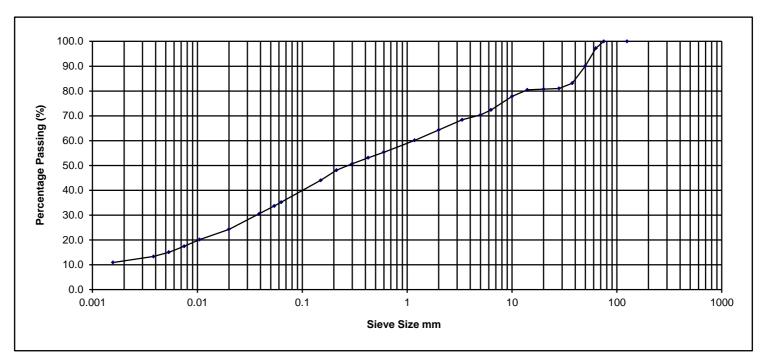
Project No. BH/TP No.

NMTL 3326 R15-CP05

Project Tzr Operator

Bus connect Route 15 Checked Nc Approved Bc

GII Project ID-9754-07-20 Date sample tested 15/12/2020 Depth


Sample No.

В 2.0m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	97.3
50.000	90.1
37.500	83.2
28.000	81.0
20.000	80.8
14.000	80.5
10.000	77.9
6.300	72.4
5.000	70.3
3.350	68.4
2.000	64.3
1.180	60.1
0.600	55.4
0.425	53.1
0.300	50.7
0.212	48.1
0.150	44.1
0.063	35.2
0.054	33.7
0.039	30.6
0.020	24.3
0.010	20.1
0.008	17.5
0.005	15.0
0.004	13.3
0.002	10.9

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
		Silt	Sand			Gravel		
10.9		24.3	29.1			32.9	2.7	0.0

Sample Description Brown/grey slightly sandy slightly gravelly silty CLAY

Project No. BH/TP No.

NMTL 3326 R15-CP05

	Proje
Operator	Tzr

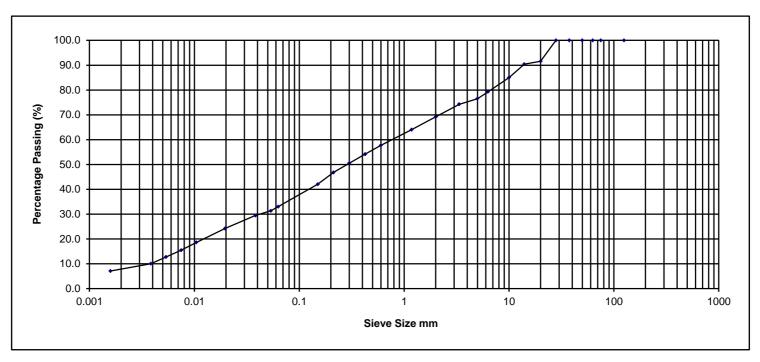
oject		Bus connect I	Route 15		GII Project	ID-9754-07-20
:r	Checked	Nc	Approved	Вс	Date sample tested	15/01

07-20 Sample No. 15/01/1900 Depth

B 4.0m

TL

Ltd


NM

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	100.0
28.000	100.0
20.000	91.6
14.000	90.4
10.000	85.0
6.300	79.3
5.000	76.5
3.350	74.3
2.000	69.2
1.180	64.0
0.600	57.7
0.425	54.2
0.300	50.5
0.212	46.8
0.150	42.1
0.063	33.0
0.054	31.4
0.038	29.5
0.020	24.2
0.010	18.6
0.007	15.5
0.005	12.8
0.004	10.0
0.002	7.1
NM	

TL

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

ĺ	Clay	Fine	Medium Coarse	Fine Medium	Coarse	Fine	Medium Coarse	Cobbles	Boulder
			Silt	Sand			Gravel		
l	7.1		25.9	36.2			30.8	0.0	0.0

Sample Description Dark grey slightly gravelly slightly sandy silty CLAY

Project No. BH/TP No.

NMTL 3326 R15-CP06

Ltd Operator

Project Bus connect Route 15 Tzr Checked Nc Approved Bc

GII Project ID-9754-07-20 Date sample tested 16/12/2020 Depth

Sample No.

В 2.50m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	100.0
28.000	100.0
20.000	94.4
14.000	93.1
10.000	89.0
6.300	85.2
5.000	83.5
3.350	81.6
2.000	78.5
1.180	74.8
0.600	69.9
0.425	66.8
0.300	62.8
0.212	57.9
0.150	48.8
0.063	35.3
0.055	31.4
0.040	27.4
0.021	19.1
0.011	12.5
0.008	9.8
0.006	7.4
0.004	5.8
0.002	4.0
NM	

TL

Ltd

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine Medium Coarse	Fine Medium Coarse	Fine Medium Coarse	Cobbles	Boulder
	Silt	Sand	Gravel		
4.0	31.4	43.1	21.5	0.0	0.0

Date sample tested

Sample Description Brown/dark grey slightly gravelly sandy clayey SILT

Project No. BH/TP No.

NMTL 3326 R15-CP06

	Project
Operator	Tzr

Project		Bus connect Route 15			
Tzr	Checked	Nc	Approved	Вс	

GII Project ID-9	Sample No.		
nle tested	16/12/2020	Denth	

o. B 3.0m

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	96.7
28.000	94.0
20.000	92.2
14.000	91.9
10.000	89.7
6.300	87.7
5.000	85.6
3.350	83.6
2.000	79.9
1.180	75.6
0.600	70.6
0.425	67.8
0.300	64.7
0.212	60.8
0.150	52.1
0.063	36.7
0.057	33.6
0.041	28.3
0.021	20.8
0.011	14.0
0.008	11.3
0.006	9.1
0.004	7.2
0.002	4.2
NM	<u></u>

TL

Ltd

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine Medium Coarse	Fine Medium Coarse	Fine Medium Coarse	Cobbles	Boulder
	Silt	Sand	Gravel		
4.2	32.5	43.2	20.1	0.0	0.0

Sample Description Dark brown slightly gravelly sandy clayey SILT

Project No. BH/TP No.

NMTL 3326 R15-CP07A

	Project		Bus
Operator	Tzr	Checked	

Connect Route 15 GII Project ID-9754-07-20

No Approved Bc Date sample tested 16/1

07-20 Sample No. 16/12/2020 Depth B 2.50m

NMTL Ltd

%
Passing
100.0
100.0
89.7
84.2
70.5
65.1
62.2
62.0
59.6
55.8
54.3
52.5
49.8
48.1
46.8
46.0
45.0
37.8
29.5
7.7
6.9
5.7
4.4
3.3
2.9
2.7
2.6
2.3

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

ſ	Clay	Fine Medium Coarse	Fine Medium Coarse	Fine Medium Coarse	Cobbles	Boulder
		Silt	Sand	Gravel		
l	2.3	5.4	42.2	39.8	10.3	0.0

Sample Description Grey silty gravelly SAND

Project No. BH/TP No.

NMTL 3326 R15-CP07A

	Project	
Operator	Tzr	

Project		Bus connect I	Route 15	
Tzr	Checked	Nc	Approved	Вс

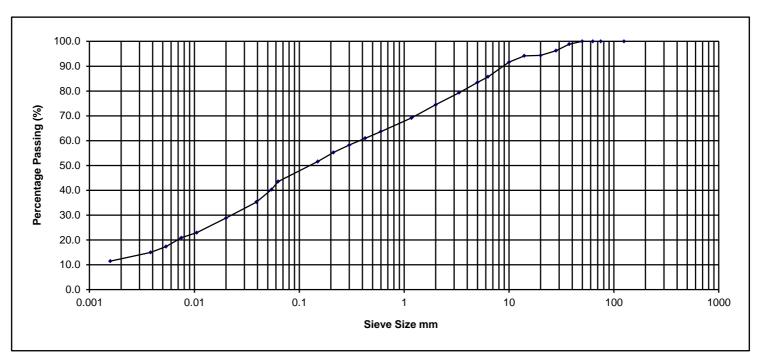
GII Project ID-9754-07-20

Date sample tested 16/12

07-20 Sample No. 16/12/2020 Depth

B 3.50m

NM TL


Ltd

NMTL Ltd

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	100.0
50.000	100.0
37.500	98.9
28.000	96.3
20.000	94.4
14.000	94.2
10.000	91.6
6.300	85.7
5.000	83.4
3.350	79.4
2.000	74.5
1.180	69.2
0.600	63.7
0.425	61.0
0.300	58.2
0.212	55.3
0.150	51.6
0.063	43.5
0.054	40.3
0.039	35.3
0.020	28.8
0.011	23.0
0.008	20.9
0.005	17.4
0.004	15.0
0.002	11.5

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

Clay	Fine Medium Coarse	Fine Medium Coarse	Fine Medium Coarse	Cobbles	Boulder
	Silt	Sand	Gravel		
11.5	32.1	30.9	25.5	0.0	0.0

Sample Description Dark grey slightly gravelly slightly sandy silty CLAY.

Project No. BH/TP No.

NMTL 3326 R15-CP07A

Project
Operator Tzr

ct Bus connect Route 15

Checked Nc Approved Bc

GII Project ID-9754-07-20

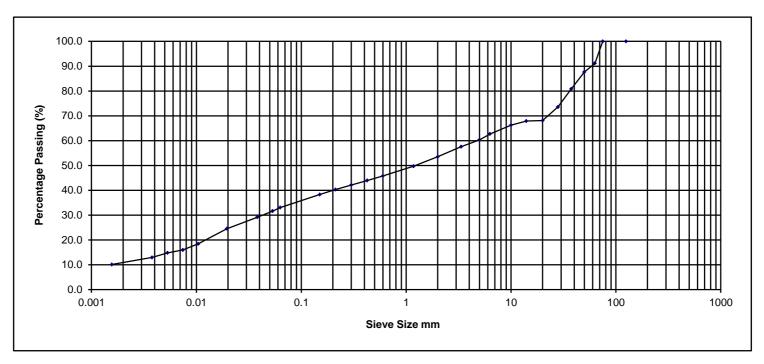
Date sample tested 16/1:

07-20 Sample No. 16/12/2020 Depth

B 4.50m

NM TL

Ltd


NMTL Ltd

Sieve	%
Size mm	Passing
125.000	100.0
75.000	100.0
63.000	91.2
50.000	87.6
37.500	80.8
28.000	73.6
20.000	68.1
14.000	67.9
10.000	66.3
6.300	62.7
5.000	60.3
3.350	57.6
2.000	53.5
1.180	49.7
0.600	45.8
0.425	43.9
0.300	42.2
0.212	40.3
0.150	38.3
0.063	33.0
0.053	31.6
0.038	29.2
0.020	24.5
0.010	18.4
0.007	16.0
0.005	14.8
0.004	13.0
0.002	10.1
NM	

TL

Determination of Particle Size Distribution

BS 1377: 1990: Part 2: Clauses 9.2 & 9.5

Percentage Particle Size

ĺ	Clay	Fine Mediu	Medium Coarse Fine Medium Coarse		Fine	Medium Coarse	Cobbles	Boulder	
		S	Silt	Sand			Gravel		
l	10.1	2	22.9	20.5			37.6	8.8	0.0

Sample Description Dark grey slightly sandy gravelly silty CLAY.

Project No. BH/TP No.

NMTL 3326 R15-CP07A

Ltd Operator

Project Bus connect Route 15 Tzr Checked Nc Approved Bc

GII Project ID-9754-07-20 Date sample tested 16/12/2020 Depth

Sample No.

В 7.0m

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention: John Duggan

Date: 21st October, 2020

Your reference: 9754-07-20

Our reference : Test Report 20/13374 Batch 1

Location: Bus Connects Route 15

Date samples received: 30th September, 2020

Status: Final report

Issue:

Eight samples were received for analysis on 30th September, 2020 of which eight were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Bruce Leslie Project Manager

Please include all sections of this report if it is reproduced $% \left(1\right) =\left(1\right) \left(1$

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connects Route 15

Contact: John Duggan EMT Job No: 20/13374

Report : Solid

EMT Job No:	20/13374									_		
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24				
Sample ID	R15 - CP06	R15 - CP06	R15 - CP06	R15 - CP06	R15 - CP07	R15 - CP07	R15 - CP07	R15 - CP07				
Depth	0.50	1.50	2.50	3.50	0.50	1.50	2.50	3.50		Please se	e attached n	otos for all
COC No / misc											ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT				
Sample Date	25/09/2020	25/09/2020	25/09/2020	25/09/2020	25/09/2020	25/09/2020	25/09/2020	25/09/2020				
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
Batch Number	1	1	1	1	1	1	1	1				
										LOD/LOR	Units	Method No.
Date of Receipt	30/09/2020	30/09/2020	30/09/2020		30/09/2020		30/09/2020			.4		TM30/PM15
Antimony Arsenic#	12.5	12.4	12.2	<1 9.5	14.6	3 15.3	11.2	<1 7.1		<1 <0.5	mg/kg mg/kg	TM30/PM15
Barium#	97	101	12.2	60	123	164	62	26		<0.5		TM30/PM15
Cadmium [#]	1.8	2.0	1.9	0.7	1.3	1.3	1.5	0.2		<0.1	mg/kg mg/kg	TM30/PM15
Chromium #	46.9	49.1	55.3	46.4	52.6	46.7	56.5	63.3		<0.5	mg/kg	TM30/PM15
Copper#	43	37	66	13	40	34	27	6		<1	mg/kg	TM30/PM15
Lead #	71	82	100	29	88	226	41	11		<5	mg/kg	TM30/PM15
Mercury#	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM30/PM15
Molybdenum #	4.9	5.0	4.8	3.5	4.6	4.5	4.9	4.2		<0.1	mg/kg	TM30/PM15
Nickel#	33.7	35.3	30.9	14.5	39.3	29.9	26.6	10.2		<0.7	mg/kg	TM30/PM15
Selenium #	2	1	1	<1	1	<1	1	<1		<1	mg/kg	TM30/PM15
Zinc [#]	117	118	164	79	118	134	69	26		<5	mg/kg	TM30/PM15
PAH MS												
Naphthalene #	0.07	0.12	<0.04	<0.04	0.27	0.13	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Acenaphthylene #	0.05	0.06	<0.03	<0.03	0.17	0.05	<0.03	<0.03		<0.03	mg/kg	TM4/PM8
Acenaphthene # Fluorene #	0.09	0.23 0.18	<0.05 <0.04	<0.05 <0.04	0.25 0.19	0.07	<0.05 <0.04	<0.05 <0.04		<0.05 <0.04	mg/kg mg/kg	TM4/PM8 TM4/PM8
Phenanthrene #	0.08	1.61	0.20	0.12	2.08	0.62	<0.03	<0.03		<0.03	mg/kg	TM4/PM8
Anthracene #	0.14	0.41	0.09	<0.04	0.49	0.15	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Fluoranthene #	0.71	1.95	0.88	0.27	3.03	1.06	0.05	<0.03		<0.03	mg/kg	TM4/PM8
Pyrene #	0.60	1.62	0.72	0.22	2.82	0.94	0.04	<0.03		<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	0.33	0.76	0.56	0.15	1.60	0.82	<0.06	<0.06		<0.06	mg/kg	TM4/PM8
Chrysene #	0.33	0.75	0.49	0.15	1.62	0.87	0.04	<0.02		<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	0.56	1.17	1.00	0.27	3.20	1.87	<0.07	<0.07		<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	0.32	0.66	0.55	0.12	1.83	1.20	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene	0.22	0.41	0.41	0.11	1.37	0.78	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	<0.04	0.08	0.07	<0.04	0.25	0.19	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	0.22	0.43	0.39	0.11	1.50	0.68	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
Coronene	<0.04	0.06	0.05	<0.04	0.26	0.09	<0.04	<0.04		<0.04	mg/kg	TM4/PM8
PAH 17 Total	4.14	10.50	5.41	1.52	20.93	9.58	<0.64	<0.64		<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	0.40	0.84	0.72	0.19	2.30	1.35	<0.05	<0.05		<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	0.16	0.33	0.28	0.08	0.90	0.52	<0.02	<0.02		<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	94	94	99	100	93	95	99	96		<0	%	TM4/PM8
Mineral Oil (C10-C40)	<30	<30	175	32	90	<30	<30	<30		<30	mg/kg	TM5/PM8/PM16

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connects Route 15

Contact: John Duggan EMT Job No: 20/13374

Report : Solid

EWIT JOD NO:	20/13374									•		
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24				
Sample ID	R15 - CP06	R15 - CP06	R15 - CP06	R15 - CP06	R15 - CP07	R15 - CP07	R15 - CP07	R15 - CP07				
Depth	0.50	1.50	2.50	3.50	0.50	1.50	2.50	3.50		Diagram		
COC No / misc											e attached r ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT				
Sample Date				25/09/2020			25/09/2020					
-	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
Sample Type												
Batch Number	1	1	1	1	1	1	1	1		LOD/LOR	Units	Method No.
Date of Receipt	30/09/2020	30/09/2020	30/09/2020	30/09/2020	30/09/2020	30/09/2020	30/09/2020	30/09/2020				
TPH CWG												
Aliphatics >C5-C6#	<0.1	<0.1 ^{sv}	<0.1 sv	<0.1 ^{sv}	<0.1 sv	<0.1	<0.1 ^{sv}	<0.1		<0.1	mg/kg	TM36/PM12
>C6-C8#	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1		<0.1	mg/kg	TM36/PM12
>C8-C10	<0.1	<0.1 <0.1	<0.1 sv	<0.1 sv	<0.1 <0.1	<0.1	<0.1 sv	<0.1		<0.1	mg/kg	TM36/PM12
>C10-C12#	<0.2	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.2		<0.2	mg/kg	TM5/PM8/PM16
>C12-C16#	<4	<4	<4	<4	<4	<4	<4	<4		<4	mg/kg	TM5/PM8/PM16
>C16-C21#	<7	<7	12	<7	11	<7	<7	<7		<7	mg/kg	TM5/PM8/PM16
>C21-C35#	15	22	126	22	64	25	<7	<7		<7	mg/kg	TM5/PM8/PM16
>C35-C40	<7	<7	37	10	15	<7	<7	<7		<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40	<26	<26	175	32	90	<26	<26	<26		<26	mg/kg	TM5/TM36/PM8/PM12/PM16
>C6-C10	<0.1	<0.1 ^{sv}	<0.1 ^{sv}	<0.1 ^{sv}	<0.1 ^{sv}	<0.1	<0.1 ^{sv}	<0.1		<0.1	mg/kg	TM36/PM12
>C10-C25	<10	<10	46	<10	17	<10	<10	<10		<10	mg/kg	TM5/PM8/PM16
>C25-C35	13	18	102	25	55	24	<10	<10		<10	mg/kg	TM5/PM8/PM16
Aromatics												
>C5-EC7#	<0.1	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 SV	<0.1		<0.1	mg/kg	TM36/PM12
>EC7-EC8#	<0.1	<0.1 ^{sv}	<0.1 sv	<0.1 ^{SV}	<0.1 ^{sv}	<0.1	<0.1 ^{SV}	<0.1		<0.1	mg/kg	TM36/PM12
>EC8-EC10#	<0.1	<0.1 ^{SV}	<0.1 ^{sv}	<0.1 ^{SV}	<0.1 ^{sv}	<0.1	<0.1 ^{SV}	<0.1		<0.1	mg/kg	TM36/PM12
>EC10-EC12#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16#	<4	<4	<4	<4	12	<4	<4	<4		<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 * >EC21-EC35 *	16 91	27 144	11 176	10 82	231 980	14 105	<7 <7	<7 <7		<7 <7	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>EC21-EC35 >EC35-EC40	34	27	64	20	142	44	<7	<7		<7	mg/kg mg/kg	TM5/PM8/PM16
Total aromatics C5-40	141	198	251	112	1365	163	<26	<26		<26	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(C5-40)	141	198	426	144	1455	163	<52	<52		<52	mg/kg	TM5/TM36/PM8/PM12/PM16
>EC6-EC10#	<0.1	<0.1 sv	<0.1 ^{SV}	<0.1 sv	<0.1 sv	<0.1	<0.1 ^{sv}	<0.1		<0.1	mg/kg	TM36/PM12
>EC10-EC25	30	65	42	29	579	38	<10	<10		<10	mg/kg	TM5/PM8/PM16
>EC25-EC35	71	108	155	69	665	87	<10	<10		<10	mg/kg	TM5/PM8/PM16
MTBE#	<5	<5 sv	<5 sv	<5 ^{SV}	<5 sv	<5	<5 ^{sv}	<5		<5	ug/kg	TM36/PM12
Benzene #	<5	<5 ^{SV}	<5 ^{sv}	<5 ^{SV}	<5 ^{SV}	<5	<5 ^{SV}	<5		<5	ug/kg	TM36/PM12
Toluene #	<5	<5 ^{SV}	<5 ^{SV}	<5 ^{SV}	<5 ^{SV}	<5	<5sv	<5		<5	ug/kg	TM36/PM12
Ethylbenzene #	<5	<5 ^{SV}	<5 ^{SV}	<5 ^{SV}	<5 ^{SV}	<5	<5 ^{SV}	<5		<5	ug/kg	TM36/PM12
m/p-Xylene #	<5	<5 SV	<5 SV	<5 ^{SV}	<5 SV	<5	<5 SV	<5		<5	ug/kg	TM36/PM12
o-Xylene [#]	<5	<5 SV	<5 ^{SV}	<5 ^{SV}	<5 SV	<5	<5 SV	<5		<5	ug/kg	TM36/PM12
PCB 28 #	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 52 #	<5	<5	<5	<5 <5	<5	<5	<5	<5		<5 <5	ug/kg	TM17/PM8
PCB 101 #	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 118#	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 138#	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 153 #	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 180#	<5	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
Total 7 PCBs #	<35	<35	<35	<35	<35	<35	<35	<35		<35	ug/kg	TM17/PM8

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connects Route 15

Contact: John Duggan EMT Job No: 20/13374

Report : Solid

LINT JOB NO.	20/10074										_		
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24					
Sample ID	R15 - CP06	R15 - CP06	R15 - CP06	R15 - CP06	R15 - CP07	R15 - CP07	R15 - CP07	R15 - CP07					
Depth	0.50	1.50	2.50	3.50	0.50	1.50	2.50	3.50			Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT					
Sample Date	25/09/2020	25/09/2020	25/09/2020	25/09/2020	25/09/2020	25/09/2020	25/09/2020	25/09/2020					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1	1	1	1					Method
Date of Receipt	30/09/2020	30/09/2020	30/09/2020	30/09/2020	30/09/2020	30/09/2020	30/09/2020	30/09/2020			LOD/LOR	Units	No.
Natural Moisture Content	13.9	17.3	24.6	24.6	9.3	17.6	28.9	22.1			<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	12.2	14.7	19.8	19.7	8.5	15.0	22.4	18.1			<0.1	%	PM4/PM0
Hexavalent Chromium #	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3			<0.3	mg/kg	TM38/PM20
Chromium III	46.9	49.1	55.3	46.4	52.6	46.7	56.5	63.3			<0.5	mg/kg	NONE/NONE
Total Cyanide #	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	mg/kg	TM89/PM45
Total Organic Carbon #	1.18	1.43	1.68	0.69	1.53	1.68	1.72	0.30			<0.02	%	TM21/PM24
Loss on Ignition #	2.8	3.2	4.5	1.7	3.8	3.7	3.6	<1.0			<1.0	%	TM22/PM0
pH#	7.93	7.89	7.45	7.68	8.28	8.12	7.64	7.84			<0.01	pH units	TM73/PM11
Mass of raw test portion Mass of dried test portion	0.1035	0.1048	0.1154	0.1231	0.099	0.1065 0.09	0.1109	0.1118				kg kg	NONE/PM17 NONE/PM17
iviass of difed test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09				kg	NONE/I WIT
	_	_	_	_	_	_			_	_			

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connects Route 15

Contact: John Duggan EMT Job No: 20/13374

Report: CEN 10:1 1 Batch

										=		
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24				
Sample ID	R15 - CP06	R15 - CP06	R15 - CP06	R15 - CP06	R15 - CP07	R15 - CP07	R15 - CP07	R15 - CP07				
Depth	0.50	1.50	2.50	3.50	0.50	1.50	2.50	3.50		Please se	e attached n	otes for all
COC No / misc											ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT				
Sample Date	25/09/2020	25/09/2020	25/09/2020	25/09/2020	25/09/2020	25/09/2020	25/09/2020	25/09/2020				
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
Batch Number	1	1	1	1	1	1	1	1				Method
Date of Receipt	30/09/2020	30/09/2020	30/09/2020	30/09/2020	30/09/2020	30/09/2020	30/09/2020	30/09/2020		LOD/LOR	Units	No.
Dissolved Antimony#	<0.002	<0.002	0.008	0.005	0.005	0.005	0.009	<0.002		<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10) #	<0.02	<0.02	0.08	0.05	0.05	0.05	0.09	<0.02		<0.02	mg/kg	TM30/PM17
Dissolved Arsenic#	<0.0025	<0.0025	0.0040	0.0091	0.0057	0.0063	0.0056	0.0038		<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10)#	<0.025	<0.025	0.040	0.091	0.057	0.063	0.056	0.038		<0.025	mg/kg	TM30/PM17
Dissolved Barium #	0.020	0.031	0.076	0.053	0.011	0.023	0.046	0.013		<0.003	mg/l	TM30/PM17
Dissolved Barium (A10) #	0.20	0.31	0.76	0.53	0.11	0.23	0.46	0.13		<0.03	mg/kg	TM30/PM17
Dissolved Cadmium #	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10)#	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	mg/kg	TM30/PM17
Dissolved Chromium#	<0.0015	<0.0015	<0.0015	<0.0015	0.0047	0.0017	<0.0015	<0.0015		<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10) #	<0.015	<0.015	<0.015	<0.015	0.047	0.017	<0.015	<0.015		<0.015	mg/kg	TM30/PM17
Dissolved Copper#	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007		<0.007	mg/l	TM30/PM17
Dissolved Copper (A10)#	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07		<0.07	mg/kg	TM30/PM17
Dissolved Lead#	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	mg/l	TM30/PM17
Dissolved Lead (A10) #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum #	0.018	0.021	0.036	0.019	0.011	0.007	0.018	0.010		<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10) #	0.18	0.21	0.36	0.19	0.11	0.07	0.18	0.10		<0.02	mg/kg	TM30/PM17
Dissolved Nickel #	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10) #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	mg/kg	TM30/PM17
Dissolved Selenium#	<0.003	<0.003	<0.003	<0.003	0.003	<0.003	<0.003	<0.003		<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10) #	<0.03	<0.03	<0.03	<0.03	0.03	<0.03	<0.03	<0.03		<0.03	mg/kg	TM30/PM17 TM30/PM17
Dissolved Zinc#	<0.003	<0.003 <0.03	0.004	<0.003 <0.03	0.003	<0.003 <0.03	<0.003 <0.03	<0.003 <0.03		<0.003 <0.03	mg/l	TM30/PM17
Dissolved Zinc (A10) * Mercury Dissolved by CVAF *	<0.0001	<0.0001	<0.0001	<0.0001	<0.00001	<0.0001	<0.0001	<0.0001		<0.0001	mg/kg mg/l	TM61/PM0
Mercury Dissolved by CVAF	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		<0.0001	mg/kg	TM61/PM0
iviercury Dissolved by CVAF	<0.0001	20.0001	20.0001	<0.0001	<0.0001	<0.0001	VO.0001	20.0001		<0.0001	mg/kg	TIVIO I/FIVIO
Total Phenols HPLC	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	mg/l	TM26/PM0
Total Phenols HPLC	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	mg/kg	TM26/PM0
Fluoride	<0.3	<0.3	<0.3	<0.3	0.4	0.4	<0.3	<0.3		<0.3	mg/l	TM173/PM0
Fluoride	<3	<3	<3	<3	4	4	<3	<3		<3	mg/kg	TM173/PM0
Sulphate as SO4#	69.8	29.2	58.3	37.7	1.3	5.2	38.2	21.4		<0.5	mg/l	TM38/PM0
Sulphate as SO4#	698	292	583	377	13	52	382	214		<5	mg/kg	TM38/PM0
Chloride #	<0.3	<0.3	0.4	2.1	0.8	1.9	0.5	0.4		<0.3	mg/l	TM38/PM0
Chloride #	<3	<3	4	21	8	19	5	4		<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	3	3	5	4	5	4	4	2		<2	mg/l	TM60/PM0
Dissolved Organic Carbon	30	30	50	40	50	40	40	<20		<20	mg/kg	TM60/PM0
Total Dissolved Solids #	170	132	220	143	59	68	172	96		<35	mg/l	TM20/PM0
Total Dissolved Solids #	1700	1320	2199	1430	590	680	1720	960		<350	mg/kg	TM20/PM0
												-
		1	<u> </u>	1	1	1	<u> </u>	ı	1	<u> </u>		I

Client Name: Ground Investigations Ireland

Reference: 9754-07-20 Location: Bus Connects Route 15 Contact: John Duggan

Report : EN12457_2

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No: 20/13374

LIII TOD ITO.	20/100/4								
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	
Sample ID	R15 - CP06	R15 - CP06	R15 - CP06	R15 - CP06	R15 - CP07	R15 - CP07	R15 - CP07	R15 - CP07	
Depth	0.50	1.50	2.50	3.50	0.50	1.50	2.50	3.50	
COC No / misc									
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	
Sample Date	25/09/2020	25/09/2020	25/09/2020	25/09/2020	25/09/2020	25/09/2020	25/09/2020	25/09/2020	
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	
Batch Number	1	1	1	1	1	1	1	1	
Date of Receipt	30/09/2020	30/09/2020	30/09/2020	30/09/2020	30/09/2020	30/09/2020	30/09/2020	30/09/2020	
Solid Waste Analysis									
Total Organic Carbon #	1.18	1.43	1.68	0.69	1.53	1.68	1.72	0.30	
Sum of BTEX	<0.025	<0.025 ^{SV}	<0.025 ^{sv}	<0.025 ^{sv}	<0.025 ^{SV}	<0.025	<0.025 ^{sv}	<0.025	
Sum of 7 PCBs#	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	< 0.035	

Please see attached notes for all abbreviations and acronyms

Containers	VJI	VJI	VJI	VJI	VJI	VJI	VJI	VJI							
Sample Date	25/09/2020	25/09/2020	25/09/2020	25/09/2020	25/09/2020	25/09/2020	25/09/2020	25/09/2020							
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil							
Batch Number	1	1	1	1	1	1	1	1			Stable Non-				Method
Date of Receipt	30/09/2020	30/09/2020	30/09/2020	30/09/2020	30/09/2020	30/09/2020	30/09/2020	30/09/2020		Inert	reactive	Hazardous	LOD LOR	Units	No.
Solid Waste Analysis															
Total Organic Carbon #	1.18	1.43	1.68	0.69	1.53	1.68	1.72	0.30		3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025 ^{sv}	<0.025 ^{sv}	<0.025 ^{sv}	<0.025 ^{sv}	<0.025	<0.025 ^{sv}	<0.025		6	-	-	<0.025	mg/kg	TM36/PM12
Sum of 7 PCBs#	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	< 0.035	<0.035		1	-	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30	175	32	90	<30	<30	<30		500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 17	4.14	10.50	5.41	1.52	20.93	9.58	<0.64	<0.64		100	-	-	<0.64	mg/kg	TM4/PM8
CEN 10:1 Leachate															
Arsenic #	<0.025	<0.025	0.040	0.091	0.057	0.063	0.056	0.038		0.5	2	25	<0.025	mg/kg	TM30/PM17
Barium #	0.20	0.31	0.76	0.53	0.11	0.23	0.46	0.13		20	100	300	<0.03	mg/kg	TM30/PM17
Cadmium #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		0.04	1	5	<0.005	mg/kg	TM30/PM17
Chromium #	<0.015	<0.015	<0.015	<0.015	0.047	0.017	<0.015	<0.015		0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper #	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07		2	50	100	<0.07	mg/kg	TM30/PM17
Mercury #	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum #	0.18	0.21	0.36	0.19	0.11	0.07	0.18	0.10		0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		0.5	10	50	<0.05	mg/kg	TM30/PM17
Antimony #	<0.02	<0.02	0.08	0.05	0.05	0.05	0.09	<0.02		0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium #	<0.03	<0.03	<0.03	<0.03	0.03	<0.03	<0.03	<0.03		0.1	0.5	7	<0.03	mg/kg	TM30/PM17
Zinc #	<0.03	<0.03	0.04	<0.03	0.03	<0.03	<0.03	<0.03		4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids #	1700	1320	2199	1430	590	680	1720	960		4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	30	30	50	40	50	40	40	<20		500	800	1000	<20	mg/kg	TM60/PM0
Mass of raw test portion	0.1035	0.1048	0.1154	0.1231	0.099	0.1065	0.1109	0.1118		-	-	-		kg	NONE/PM17
Dry Matter Content Ratio	87.4	85.6	77.8	73.3	90.6	84.3	80.9	80.4		-	-	-	<0.1	%	NONE/PM4
Leachant Volume	0.887	0.885	0.874	0.867	0.891	0.883	0.879	0.878		-	-	-		I	NONE/PM17
Eluate Volume	0.8	8.0	8.0	0.8	0.8	8.0	0.8	0.8		-	-	-		I	NONE/PM17
pH #	7.93	7.89	7.45	7.68	8.28	8.12	7.64	7.84		-	-	-	<0.01	pH units	TM73/PM11
Fluoride	<3	<3	<3	<3	4	4	<3	<3		-	-	-	<3	mg/kg	TM173/PM0
0.1.1.4	600	292	Enn	277	40	F0	200	24.4		4000	20000	E0000	,e	m « /	TM20/DM2
Sulphate as SO4 #	698 <3	292 <3	583 4	377 21	13 8	52 19	382 5	214		1000 800	20000 15000	50000 25000	<5 <3	mg/kg	TM38/PM0 TM38/PM0
Chloride #	<3	<3	4	21	8	19	5	4		800	15000	25000	<3	mg/kg	TIVI38/PIVIU
															1
															
															
															}
		1	1			1	1	1				1			1

Reference: 20/07/9754

Location: Bus Connects Route 15

Contact: John Duggan

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
20/13374	1	R15 - CP06	0.50	2	19/10/2020	General Description (Bulk Analysis)	soil-stones
					19/10/2020	Asbestos Fibres	NAD
					19/10/2020	Asbestos ACM	NAD
					19/10/2020	Asbestos Type	NAD
					19/10/2020	Asbestos Level Screen	NAD
20/13374	1	R15 - CP06	1.50	5	19/10/2020	General Description (Bulk Analysis)	Soil/Stones
					19/10/2020	Asbestos Fibres	NAD
					19/10/2020	Asbestos ACM	NAD
					19/10/2020	Asbestos Type	NAD
					19/10/2020	Asbestos Level Screen	NAD
20/13374	1	R15 - CP06	2.50	8	19/10/2020	General Description (Bulk Analysis)	Soil/Stones
					19/10/2020	Asbestos Fibres	NAD
					19/10/2020	Asbestos ACM	NAD
					19/10/2020	Asbestos Type	NAD
					19/10/2020	Asbestos Level Screen	NAD
20/13374	1	R15 - CP06	3.50	11	19/10/2020	General Description (Bulk Analysis)	Soil/Stones
					19/10/2020	Asbestos Fibres	NAD
					19/10/2020	Asbestos ACM	NAD
					19/10/2020	Asbestos Type	NAD
					19/10/2020	Asbestos Level Screen	NAD
20/13374	1	R15 - CP07	0.50	14	19/10/2020	General Description (Bulk Analysis)	Soil/Stones
					19/10/2020	Asbestos Fibres	NAD
					19/10/2020	Asbestos ACM	NAD
					19/10/2020	Asbestos Type	NAD
					19/10/2020	Asbestos Level Screen	NAD
20/13374	1	R15 - CP07	1.50	17	17/10/2020	General Description (Bulk Analysis)	soil-stones
					17/10/2020	Asbestos Fibres	NAD
					17/10/2020	Asbestos ACM	NAD
					17/10/2020	Asbestos Type	NAD
					17/10/2020	Asbestos Level Screen	NAD
20/13374	1	R15 - CP07	2.50	20	19/10/2020	General Description (Bulk Analysis)	soil-stones
					19/10/2020	Asbestos Fibres	NAD
					19/10/2020	Asbestos ACM	NAD

Reference: 20/07/9754

Location: Bus Connects Route 15

Contact: John Duggan

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
20/13374	1	R15 - CP07	2.50	20	19/10/2020	Asbestos Type	NAD
						Asbestos Level Screen	NAD
20/13374	1	R15 - CP07	3.50	23	19/10/2020	General Description (Bulk Analysis)	soil-stones
20/100/4			0.00	20		Asbestos Fibres	NAD
						Asbestos ACM	NAD
						Asbestos Type	NAD
					19/10/2020	Asbestos Level Screen	NAD

Reference: 9754-07-20

Location: Bus Connects Route 15

Contact: John Duggan

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 20/13374	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/13374

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory.

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 20/13374

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

# ISO17025 (UKAS Ref No. 4225) accredited - UK. SA ISO17025 (SANAS Ref No.T0729) accredited - South Africa B Indicates analyte found in associated method blank.	
B Indicates analyte found in associated method blank.	
DR Dilution required.	
M MCERTS accredited.	
NA Not applicable	
NAD No Asbestos Detected.	
ND None Detected (usually refers to VOC and/SVOC TICs).	
NDP No Determination Possible	
SS Calibrated against a single substance	
SV Surrogate recovery outside performance criteria. This may be due to a matrix effect.	
W Results expressed on as received basis.	
+ AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.	
Results above calibration range, the result should be considered the minimum value. The actual result could be sign higher, this result is not accredited.	ificantly
* Analysis subcontracted to an Element Materials Technology approved laboratory.	
AD Samples are dried at 35°C ±5°C	
CO Suspected carry over	
LOD/LOR Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS	
ME Matrix Effect	
NFD No Fibres Detected	
BS AQC Sample	
LB Blank Sample	
N Client Sample	
TB Trip Blank Sample	
OC Outside Calibration Range	

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes
TM22	Modified BS1377-3:1990 Gravimetric determination of Loss on Ignition by temperature controlled Muffle Furnace (35C-440C). On request modified ASTM D2974-00 LOI (105C-440C)	- PM0	No preparation is required.	Yes		AD	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE re	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE re	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM65	Asbestos Bulk Identification method based on HSG 248 First edition (2006)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide, Sulphide and Thiocyanate analysis.	Yes		AR	Yes
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention: John Duggan

Date: 16th November, 2020

Your reference: 9754-07-20

Our reference : Test Report 20/15137 Batch 1

Location : Bus Connects Route 15

Date samples received: 2nd November, 2020

Status: Final report

Issue: 1

Two samples were received for analysis on 2nd November, 2020 of which two were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Please include all sections of this report if it is reproduced

Authorised By:

Phil Sommerton BSc Senior Project Manager

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connects Route 15

Contact: John Duggan EMT Job No: 20/15137

Report : Solid

LWIT JOB NO.	20/13137		 	 	 	 			
EMT Sample No.	1-3	4-6							
Sample ID	R15-CP04	R15-CP04							
Depth	0.50	1.50					Diagon on	e attached n	otoo for all
COC No / misc								ations and a	
Containers	VJT	VJT							
Sample Date	30/10/2020	30/10/2020							
Sample Type	Soil	Soil							
Batch Number	1	1							
Date of Receipt							LOD/LOR	Units	Method No.
Antimony	<1	<1					<1	mg/kg	TM30/PM15
Arsenic#	5.2	5.5					<0.5	mg/kg	TM30/PM15
Barium#	27	27					<1	mg/kg	TM30/PM15
Cadmium #	5.3	0.9					<0.1	mg/kg	TM30/PM15
Chromium#	26.6	38.4					<0.5	mg/kg	TM30/PM15
Copper#	12	13					<1	mg/kg	TM30/PM15
Lead #	5	9					<5	mg/kg	TM30/PM15
Mercury#	<0.1	<0.1					<0.1	mg/kg	TM30/PM15
Molybdenum#	13.7	2.9					<0.1	mg/kg	TM30/PM15
Nickel #	18.3	18.3					<0.7	mg/kg	TM30/PM15
Selenium#	<1	<1					<1	mg/kg	TM30/PM15
Zinc#	113	49					<5	mg/kg	TM30/PM15
PAH MS	0.04	0.04					0.04		T144/D140
Naphthalene #	<0.04 <0.03	<0.04 <0.03					<0.04 <0.03	mg/kg	TM4/PM8 TM4/PM8
Acenaphthylene Acenaphthene#	<0.05	<0.05					<0.05	mg/kg mg/kg	TM4/PM8
Fluorene #	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Phenanthrene#	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Anthracene#	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Fluoranthene#	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Pyrene#	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene#	<0.06	<0.06					<0.06	mg/kg	TM4/PM8
Chrysene #	<0.02	<0.02					<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene#	<0.07	<0.07					<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene#	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene#	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Coronene	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
PAH 17 Total Benzo(b)fluoranthene	<0.64 <0.05	<0.64 <0.05					<0.64 <0.05	mg/kg	TM4/PM8 TM4/PM8
Benzo(k)fluoranthene	<0.05	<0.05					<0.05	mg/kg mg/kg	TM4/PM8
PAH Surrogate % Recovery	88	94					<0	%	TM4/PM8
. 7 a 1 Gan again 70 Massiery		0.					10	,,	
Mineral Oil (C10-C40) (EH_CU_1D_Total)	<30	<30					<30	mg/kg	TM5/PM8/PM16

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connects Route 15

Contact: John Duggan EMT Job No: 20/15137

Report : Solid

LIVIT JOD NO.	20/13137		 	 	 	 			
EMT Sample No.	1-3	4-6							
Sample ID	R15-CP04	R15-CP04							
Depth	0.50	1.50					Diagra sa	e attached n	otos for all
COC No / misc							3	ations and a	
Containers	VJT	VJT							
Sample Date	30/10/2020	30/10/2020							
Sample Type	Soil	Soil							
Batch Number	1	1							
							LOD/LOR	Units	Method No.
Date of Receipt TPH CWG	02/11/2020	02/11/2020							
Aliphatics									
>C5-C6 (HS_1D_AL)#	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL)#	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_1D_AL)#	<0.2	<0.2					<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_1D_AL)#	<4	<4					<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH_1D_AL)#	<7	<7					<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_1D_AL)#	<7	<7					<7	mg/kg	TM5/PM8/PM16
>C35-C40 (EH_1D_AL)	<7	<7					<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40 (EH+HS_1D_AL)	<26	<26					<26	mg/kg	TMS/TMS6/PM6/PM12/PM16
>C6-C10 (HS_1D_AL)	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>C10-C25 (EH_1D_AL)	<10	<10					<10	mg/kg	TM5/PM8/PM16
>C25-C35 (EH_1D_AL)	<10	<10					<10	mg/kg	TM5/PM8/PM16
Aromatics									
>C5-EC7 (HS_1D_AR)#	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR) #	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR)#	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_1D_AR)#	<0.2	<0.2					<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_1D_AR)#	<4 <7	<4 <7					<4 <7	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>EC16-EC21 (EH_1D_AR)#	<7	<7					<7	mg/kg mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_1D_AR)* >EC35-EC40 (EH_1D_AR)	<7	<7					<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40 (EH+HS_1D_AR)	<26	<26					<26	mg/kg	TMS/TMS6/PMM/PM12/PM16
Total aliphatics and aromatics (C5-40) (EH+HS_CJ_1D_Total)	<52	<52					<52	mg/kg	TMS/TM36/PMM/PM12/PM16
>EC6-EC10 (HS 1D AR)#	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>EC10-EC25 (EH_1D_AR)	<10	<10					<10	mg/kg	TM5/PM8/PM16
>EC25-EC35 (EH_1D_AR)	<10	<10					<10	mg/kg	TM5/PM8/PM16
MTBE#	<5	<5					<5	ug/kg	TM36/PM12
Benzene#	20	<5					<5	ug/kg	TM36/PM12
Toluene #	<5	<5					<5	ug/kg	TM36/PM12
Ethylbenzene #	<5	<5					<5	ug/kg	TM36/PM12
m/p-Xylene#	<5	<5					<5	ug/kg	TM36/PM12
o-Xylene#	<5	<5					<5	ug/kg	TM36/PM12
*	-	_					-		T147/D140
PCB 28#	<5 <5	<5 <5					<5 <5	ug/kg	TM17/PM8 TM17/PM8
PCB 52 [#] PCB 101 [#]	<5 <5	<5 <5					<5 <5	ug/kg ug/kg	TM17/PM8
PCB 101" PCB 118#	<5 <5	<5 <5					<5 <5	ug/kg ug/kg	TM17/PM8
PCB 118 PCB 138#	<5 <5	<5 <5					<5	ug/kg	TM17/PM8
PCB 153 [#]	<5	<5					<5	ug/kg	TM17/PM8
PCB 180#	<5	<5					<5	ug/kg	TM17/PM8
Total 7 PCBs#	<35	<35					<35	ug/kg	TM17/PM8

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connects Route 15

Contact: John Duggan EMT Job No: 20/15137

Report : Solid

								_		
EMT Sample No.	1-3	4-6								
Sample ID	R15-CP04	R15-CP04								
Depth	0.50	1.50						Please se	e attached n	otes for all
COC No / misc									ations and a	
Containers	VJT	VJT								
Sample Date	30/10/2020	30/10/2020								
Sample Type	Soil	Soil								
Batch Number	1	1								Method
Date of Receipt	02/11/2020	02/11/2020						LOD/LOR	Units	No.
Natural Moisture Content	17.0	7.3						<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	14.5	6.8						<0.1	%	PM4/PM0
Hexavalent Chromium#	<0.3	<0.3						<0.3	mg/kg	TM38/PM20
Chromium III	26.6	38.4						<0.5	mg/kg	NONE/NONE
Total Cyanide [#]	<0.5	<0.5						<0.5	mg/kg	TM89/PM45
Total Organic Carbon #	0.19	0.29						<0.02	%	TM21/PM24
Loss on Ignition#	<1.0	1.1						<1.0	%	TM22/PM0
pH [#]	8.48	8.82						<0.01	pH units	TM73/PM11
Mass of raw test portion	0.1023	0.098							kg	NONE/PM17
Mass of dried test portion	0.09	0.09							kg	NONE/PM17
					<u> </u>		<u> </u>	<u> </u>	<u> </u>	l

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connects Route 15

Contact: John Duggan EMT Job No: 20/15137

Report: CEN 10:1 1 Batch

EMT 0	1.0	4.0							
EMT Sample No.	1-3	4-6							
Sample ID	R15-CP04	R15-CP04							
Depth	0.50	1.50						e attached n	
COC No / misc							abbrevi	ations and a	cronyms
Containers	VJT	VJT							
Sample Date	30/10/2020	30/10/2020							
-		Soil							
Sample Type	Soil								Т
Batch Number	1	1					LOD/LOR	Units	Method
Date of Receipt	02/11/2020	02/11/2020							No.
Dissolved Antimony#	<0.002	0.002					<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10)#	<0.02	0.02					<0.02	mg/kg	TM30/PM17
Dissolved Arsenic#	<0.0025	<0.0025					<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10)#	<0.025	<0.025					<0.025	mg/kg	TM30/PM17
Dissolved Barium#	<0.003	<0.003					<0.003	mg/l	TM30/PM17
Dissolved Barium (A10)#	<0.03	<0.03					<0.03	mg/kg	TM30/PM17
Dissolved Cadmium#	<0.0005	<0.0005					<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10)#	<0.005	<0.005					<0.005	mg/kg	TM30/PM17
Dissolved Chromium#	<0.0015	<0.0015					<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10)#	<0.015	<0.015					<0.015	mg/kg	TM30/PM17
Dissolved Copper#	<0.007	<0.007					<0.007	mg/l	TM30/PM17
Dissolved Copper (A10) #	<0.07	<0.07					<0.07	mg/kg	TM30/PM17
Dissolved Lead #	<0.005	<0.005					<0.005	mg/l	TM30/PM17
Dissolved Lead (A10)#	<0.05	<0.05					<0.05	mg/kg	TM30/PM17
_	<0.002	0.004					<0.002	mg/l	TM30/PM17
Dissolved Molybdenum#	<0.02	0.04					<0.02	mg/kg	TM30/PM17
Dissolved Molybdenum (A10) #	<0.002	<0.002					<0.002	mg/l	TM30/PM17
Dissolved Nickel #	<0.02	<0.02					<0.02	mg/kg	TM30/PM17
Dissolved Nickel (A10)#	<0.003	<0.003					<0.003	mg/l	TM30/PM17
Dissolved Selenium#	<0.03	<0.03					<0.03	-	
Dissolved Selenium (A10)#	0.003	<0.03					<0.03	mg/kg	TM30/PM17
Dissolved Zinc#	0.003	<0.003					<0.003	mg/l	TM30/PM17 TM30/PM17
Dissolved Zinc (A10) #								mg/kg	
Mercury Dissolved by CVAF#	<0.00001	<0.00001					<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF #	<0.0001	<0.0001					<0.0001	mg/kg	TM61/PM0
Total Dhanala LIDLO	.0.05	-0.05					.0.05	/1	TMOC/DMO
Total Phenois HPLC	<0.05	<0.05					<0.05	mg/l	TM26/PM0
Total Phenols HPLC	<0.5	<0.5					<0.5	mg/kg	TM26/PM0
The section	0.1								
Fluoride	0.4	<0.3					<0.3	mg/l	TM173/PM0
Fluoride	4	<3					<3	mg/kg	TM173/PM0
	0.5	0.7					.0.5	, h	TM00/DM6
Sulphate as SO4#	0.5	0.7					<0.5	mg/l	TM38/PM0
Sulphate as SO4#	5	7					<5	mg/kg	TM38/PM0
Chloride#	<0.3	0.7					<0.3	mg/l	TM38/PM0
Chloride#	<3	7					<3	mg/kg	TM38/PM0
a	_	_					_		
Dissolved Organic Carbon	4	3					<2	mg/l	TM60/PM0
Dissolved Organic Carbon	40	30					<20	mg/kg	TM60/PM0
Total Dissolved Solids#	52	<35					<35	mg/l	TM20/PM0
Total Dissolved Solids#	520	<350					<350	mg/kg	TM20/PM0

Client Name: Ground Investigations Ireland

Reference: 9754-07-20 Bus Connects Route 15 Location:

John Duggan 20/15137 Contact: EMT Job No:

Report : EN12457_2

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EWI JOD NO:	20/15137					
EMT Sample No.	1-3	4-6				
Sample ID	R15-CP04	R15-CP04				
Depth	0.50	1.50				
COC No / misc						
Containers	VJT	VJT				
Sample Date	30/10/2020	30/10/2020				
Sample Type	Soil	Soil				
Batch Number	1	1				
Date of Receipt	02/11/2020	02/11/2020				
Solid Waste Analysis						

Please see attached notes for all

Lead* <0.05 <0.05 0.05 0.5 10 50 <0.05 mg/kg TM30/PM17 Antimony* <0.02 0.02 0.06 0.7 5 <0.02 mg/kg TM30/PM17 Selenium* <0.03 <0.03 0.03 </th <th>Depth</th> <th>0.50</th> <th>1.50</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>e attached n</th> <th></th>	Depth	0.50	1.50									e attached n	
Sample Type Solf	COC No / misc										abbrevia	ations and a	cronyms
Sample Type Soil Soil 1	Containers	VJT	VJT										
Batch Number 1 1 1 1 2 2 2 2 2 2	Sample Date	30/10/2020	30/10/2020										
Batch Number 1 1 1 1 2 2 2 2 2 2	Sample Type	Soil	Soil										
Date of Receipt 02/11/2000 02/11/2020													
Date Carte							Inert		Hazardous	LOD LOR	Units		
Total Organic Carbon* 0.19 0.29		02/11/2020	02/11/2020										
Sum of FEX													
Sum of 7 PCBs	-												
Mereri Oil													
PAH Sum of 17													
## CEN 10-1 Leachate Arsenic*													
Arsenic	PAH Sum of 17	<0.64	<0.64					100	-	-	<0.64	mg/kg	TIVI4/PIVI8
Arsenic	CEN 10:1 Leachate												
Barlum		<0.025	<0.025					0.5	2	25	<0.025	ma/ka	TM30/PM17
Cadmium*													
Chromium*													
Copper													
Mercury* <0.0001													
Molybdenum*													
Nokel													Į.
Lead* < 0.05													TM30/PM17
Antimony			<0.05					0.5	10	50			TM30/PM17
Zinc		<0.02	0.02					0.06	0.7	5	<0.02		TM30/PM17
Total Dissolved Solids	Selenium #	< 0.03	< 0.03					0.1	0.5	7	< 0.03	mg/kg	TM30/PM17
Dissolved Organic Carbon	Zinc #	0.03	< 0.03					4	50	200	< 0.03	mg/kg	TM30/PM17
Mass of raw test portion 0.1023 0.098 0.098 0.0098 0.0098 0.0098 0.0098 0.0098 0.0098 0.0098 0.0098 0.0098 0.0099 0.0098 0.0099	Total Dissolved Solids #	520	<350					4000	60000	100000	<350	mg/kg	TM20/PM0
Dry Matter Content Ratio 87.9 91.8 91.8 91.8 91.8 91.8 91.8 91.8 91	Dissolved Organic Carbon	40	30					500	800	1000	<20	mg/kg	TM60/PM0
Dry Matter Content Ratio 87.9 91.8 91.8 91.8 91.8 91.8 91.8 91.8 91													
Leachant Volume 0.888 0.892	Mass of raw test portion	0.1023	0.098					-	-	-		kg	NONE/PM17
Eluate Volume 0.8 0.6	Dry Matter Content Ratio	87.9	91.8					-	-	-	<0.1	%	NONE/PM4
PH® 8.48 8.82		0.888						-	-	-		I	
Fluoride 4 <3	Eluate Volume	0.8	0.6					-	-	-		I	NONE/PM17
Fluoride 4 <3													
Sulphate as SO4	pH#	8.48	8.82					-	-	-	<0.01	pH units	TM73/PM11
Sulphate as SO4													
	Fluoride	4	<3					-	-	-	<3	mg/kg	TM173/PM0
		_	-					4000	20000	50000	-	/1	TM00/DM0
Chionde* <3 / 800 15000 25000 <3 mg/kg IM38/PM0													Į.
	Chloride "	<3	/					800	15000	25000	<3	mg/kg	TM38/PM0

Reference: 20/07/9754

Location: Bus Connects Route 15

Contact: John Duggan

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
20/15137	1	R15-CP04	0.50	2	12/11/2020	General Description (Bulk Analysis)	Soil/Stones
					12/11/2020	Asbestos Fibres	NAD
					12/11/2020	Asbestos ACM	NAD
					12/11/2020	Asbestos Type	NAD
					12/11/2020	Asbestos Level Screen	NAD
20/15137	1	R15-CP04	1.50	5	12/11/2020	General Description (Bulk Analysis)	Soil/Stones
					12/11/2020	Asbestos Fibres	NAD
						Asbestos ACM	NAD
					12/11/2020	Asbestos Type	NAD
					12/11/2020	Asbestos Level Screen	NAD

Reference: 9754-07-20

Location: Bus Connects Route 15

Contact: John Duggan

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 20/15137	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/15137

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCl (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 20/15137

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes
TM22	Modified BS1377-3:1990 Gravimetric determination of Loss on Ignition by temperature controlled Muffle Furnace (35C-440C). On request modified ASTM D2974-00 LOI (105C-440C)	PM0	No preparation is required.	Yes		AD	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
ТМ36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM65	Asbestos Bulk Identification method based on HSG 248 First edition (2006)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide, Sulphide and Thiocyanate analysis.	Yes		AR	Yes
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention: John Duggan

Date: 16th December, 2020

Your reference: 9754-07-20

Our reference : Test Report 20/15509 Batch 1

Location : Bus Connects Route 15

Date samples received: 9th November, 2020

Status: Final report

Issue: 1

Nine samples were received for analysis on 9th November, 2020 of which nine were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Phil Sommerton BSc

Senior Project Manager

Please include all sections of this report if it is reproduced $% \left(1\right) =\left(1\right) \left(1$

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connects Route 15

Contact: John Duggan EMT Job No: 20/15509

Report : Solid

EMI JOD NO:	20/15509											
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27			
Sample ID	R15-CP02	R15-CP03	R15-CP03	R15-CP03	R15-CP03	R15-CP05	R15-CP05	R15-CP05	R15-CP05			
Depth	0.50	0.50	1.50	2.50	3.50	0.50	1.50	2.50	3.50	Planca co	e attached n	otos for all
COC No / misc											ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	1		
Sample Date			05/11/2020			04/11/2020			04/11/2020			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil			
Batch Number	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.
Date of Receipt			09/11/2020		09/11/2020	09/11/2020		09/11/2020	09/11/2020			NO.
Antimony	1	7	2	2	2	2	2	2	<1	<1	mg/kg	TM30/PM15
Arsenic#	6.4	14.6	12.2	11.2	9.5	9.9	10.6	11.5	7.1	<0.5	mg/kg	TM30/PM15
Barium#	53 0.7	65 1.0	57 2.1	70 1.8	53 1.9	90	92	83 3.1	54 1.5	<1 <0.1	mg/kg	TM30/PM15 TM30/PM15
Cadmium# Chromium#	53.4	46.7	35.5	33.1	35.2	43.5	39.8	38.5	32.8	<0.1	mg/kg mg/kg	TM30/PM15
Copper#	19	75	32	25	26	28	32	29	18	<1	mg/kg	TM30/PM15
Lead #	10	300	22	16	18	23	20	19	14	<5	mg/kg	TM30/PM15
Mercury #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM30/PM15
Molybdenum#	3.1	3.3	4.0	4.2	3.7	4.3	4.7	4.4	3.1	<0.1	mg/kg	TM30/PM15
Nickel #	16.8	28.0	38.6	33.4	30.9	33.7	39.7	37.8	22.4	<0.7	mg/kg	TM30/PM15
Selenium#	<1	<1	1	<1	2	1	2	2	2	<1	mg/kg	TM30/PM15
Zinc#	48	73	89	73	92	86	92	82	58	<5	mg/kg	TM30/PM15
PAH MS												
Naphthalene #	<0.04	0.06	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	0.09	0.14	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	0.07	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04	0.09	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Phenanthrene#	<0.03	0.66	1.10	<0.03	<0.03	0.16	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	0.24 1.65	0.35 1.64	<0.04 <0.03	<0.04	<0.04	<0.04	<0.04 <0.03	<0.04 <0.03	<0.04 <0.03	mg/kg mg/kg	TM4/PM8 TM4/PM8
Fluoranthene # Pyrene #	<0.03	1.69	1.38	<0.03	<0.03	0.31	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene#	<0.06	1.02	0.81	<0.06	<0.06	0.21	<0.06	<0.06	<0.06	<0.06	mg/kg	TM4/PM8
Chrysene#	<0.02	1.14	0.76	<0.02	<0.02	0.22	<0.02	<0.02	<0.02	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene#	<0.07	2.71	1.18	<0.07	<0.07	0.31	<0.07	<0.07	<0.07	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene#	<0.04	1.69	0.65	<0.04	<0.04	0.17	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene	<0.04	1.25	0.39	<0.04	<0.04	0.09	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene#	<0.04	0.19	0.10	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene#	<0.04	1.35	0.36	<0.04	<0.04	0.11	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Coronene	<0.04	0.27	0.07	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
PAH 17 Total	<0.64	14.08	9.02	<0.64	<0.64	1.84	<0.64	<0.64	<0.64	<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05	1.95	0.85	<0.05	<0.05	0.22	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene PAH Surrogate % Recovery	<0.02 91	0.76 87	0.33 96	<0.02 87	<0.02 86	0.09 90	<0.02 89	<0.02 91	<0.02 86	<0.02 <0	mg/kg %	TM4/PM8 TM4/PM8
PAH Surrogate % Recovery	91	07	96	01	00	90	69	91	00	<0	70	TIVI4/PIVIO
Mineral Oil (C10-C40) (EH_CU_1D_Total)	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	mg/kg	TMS/PM8/PM16

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connects Route 15

Contact: John Duggan EMT Job No: 20/15509

Report : Solid

EMT Job No:	20/15509									_		
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27			
Sample ID	R15-CP02	R15-CP03	R15-CP03	R15-CP03	R15-CP03	R15-CP05	R15-CP05	R15-CP05	R15-CP05			
Depth	0.50	0.50	1.50	2.50	3.50	0.50	1.50	2.50	3.50	Please se	e attached n	otes for all
COC No / misc											ations and a	
Containers	VJT	i										
Sample Date	06/11/2020	05/11/2020	05/11/2020	05/11/2020	05/11/2020	04/11/2020	04/11/2020	04/11/2020	04/11/2020			
Sample Type		Soil										
Batch Number	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method No.
Date of Receipt	09/11/2020	09/11/2020	09/11/2020	09/11/2020	09/11/2020	09/11/2020	09/11/2020	09/11/2020	09/11/2020			140.
TPH CWG												
Aliphatics	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	sv	<0.1	ma/ka	Thank (Dhaac
>C5-C6 (HS_1D_AL)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 sv <0.1 sv	<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL)* >C8-C10 (HS_1D_AL)	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	mg/kg mg/kg	TM36/PM12
_	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM5/PM8/PM16
>C10-C12 (EH_CU_1D_AL)* >C12-C16 (EH_CU_1D_AL)*	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH CU 1D AL)#	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_CU_1D_AL)#	<7	26	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C35-C40 (EH_1D_AL)	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40 (EH+HS_1D_AL)	<26	26	<26	<26	<26	<26	<26	<26	<26	<26	mg/kg	TMS/TMS6/PM6/PM12/PM16
>C6-C10 (HS_1D_AL)	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1 sv	<0.1	mg/kg	TM36/PM12
>C10-C25 (EH_1D_AL)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
>C25-C35 (EH_1D_AL)	<10	25	<10	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
Aromatics												
>C5-EC7 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{sv}	<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR) #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{sv}	<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR) #	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR) #	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)#	<7	27	24	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR) #	<7	203	101	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC35-EC40 (EH_1D_AR)	<7	36	17	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40 (EH+HS_1D_AR)	<26	266	142	<26	<26	<26	<26	<26	<26	<26	mg/kg	TMS/TMS6/PM6/PM12/PM16
Total aliphatics and aromatics(C5-40) (EH+HS_CU_1D_Total)	<52	292	142	<52	<52	<52	<52	<52	<52	<52	mg/kg	TME/TMOS/PMM/PM12/PM16
>EC6-EC10 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 sv	<0.1	mg/kg	TM36/PM12
>EC10-EC25 (EH_1D_AR)	<10	71	50	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
>EC25-EC35 (EH_1D_AR)	<10	161	75	<10	<10	<10	<10	<10	<10	<10	mg/kg	TM5/PM8/PM16
MTBE#	<5	<5	<5	<5	<5	<5	<5	<5	<5 SV	<5	ug/kg	TM36/PM12
	<5 <5	<5" SV <5"	<5 <5	ug/kg ug/kg	TM36/PM12							
Benzene# Toluene#	<5 <5	<5 <5	<5	<5	<5	9	<5	<5	<5°	<5 <5	ug/kg	TM36/PM12
Ethylbenzene#	<5	<5	<5	<5	<5	<5	<5	<5	9 <5 SV	<5	ug/kg	TM36/PM12
m/p-Xylene #	<5	<5	<5	<5	<5	<5	<5	<5	<5 <5	<5	ug/kg	TM36/PM12
o-Xylene#	<5	<5	<5	<5	<5	<5	<5	<5	sv <5	<5	ug/kg	TM36/PM12
,									-5		2 0	
PCB 28#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 52#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 101#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 118#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 138#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 153#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
PCB 180#	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	ug/kg	TM17/PM8
Total 7 PCBs#	<35	<35	<35	<35	<35	<35	<35	<35	<35	<35	ug/kg	TM17/PM8

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connects Route 15

Contact: John Duggan EMT Job No: 20/15509

Report : Solid

					1	1							
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27				
Sample ID	R15-CP02	R15-CP03	R15-CP03	R15-CP03	R15-CP03	R15-CP05	R15-CP05	R15-CP05	R15-CP05				
Depth	0.50	0.50	1.50	2.50	3.50	0.50	1.50	2.50	3.50		Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT												
Sample Date	06/11/2020	05/11/2020	05/11/2020	05/11/2020	05/11/2020	04/11/2020	04/11/2020	04/11/2020	04/11/2020				
Sample Type	Soil		ĺ										
Batch Number	1	1	1	1	1	1	1	1	1		100#00	11.50	Method
Date of Receipt	09/11/2020	09/11/2020	09/11/2020	09/11/2020	09/11/2020	09/11/2020	09/11/2020	09/11/2020	09/11/2020		LOD/LOR	Units	No.
Natural Moisture Content	13.1	17.5	13.9	11.7	12.9	11.9	16.3	17.7	17.2		<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	11.6	14.9	12.2	10.5	11.4	10.7	14.0	15.0	14.7		<0.1	%	PM4/PM0
Hexavalent Chromium#	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3		<0.3	mg/kg	TM38/PM20
Chromium III	53.4	46.7	35.5	33.1	35.2	43.5	39.8	38.5	32.8		<0.5	mg/kg	NONE/NONE
T-1-1 O #	-0.5	-0.5	-0.5	<0.5	-0.5	-0.5	-0.5	-0.5	-0.5		-0.5	m = /1:-	TMCC/Pt44=
Total Cyanide [#]	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	mg/kg	TM89/PM45
Total Organic Carbon #	0.21	0.92	0.41	0.30	0.31	0.68	0.57	0.56	0.54		<0.02	%	TM21/PM24
Loss on Ignition#	4.5	2.4	2.3	1.7	1.3	2.8	2.8	2.6	1.2		<1.0	%	TM22/PM0
pH #	11.96	11.13	9.16	8.72	8.76	8.40	8.34	7.89	8.21		<0.01	pH units	TM73/PM11
Mass of raw test portion	0.1017	0.1058	0.104	0.1009	0.1018	0.107	0.1057	0.1061	0.1064			kg	NONE/PM17
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09			kg	NONE/PM17
		1		l .	l	l	l .	I	J.	l	J.		لــــــــــــــــــــــــــــــــــــــ

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connects Route 15

Contact: John Duggan EMT Job No: 20/15509

Report: CEN 10:1 1 Batch

EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27			
Sample ID	R15-CP02	R15-CP03	R15-CP03	R15-CP03	R15-CP03	R15-CP05	R15-CP05	R15-CP05	R15-CP05			
Depth	0.50	0.50	1.50	2.50	3.50	0.50	1.50	2.50	3.50	Please se	e attached n	otes for all
COC No / misc										abbrevi	ations and a	cronyms
Containers	VJT	VJT	i									
Sample Date	06/11/2020	05/11/2020	05/11/2020	05/11/2020	05/11/2020	04/11/2020	04/11/2020	04/11/2020	04/11/2020	1		
Sample Type	Soil	Soil										
	1	1		1	1	1	1					
Batch Number			1					1	1	LOD/LOR	Units	Method No.
Date of Receipt	09/11/2020		09/11/2020	09/11/2020	09/11/2020	09/11/2020	09/11/2020	09/11/2020	09/11/2020	0.000	(1	T1400/D1447
Dissolved Antimony#	<0.002 <0.02	0.006	<0.002 <0.02	mg/l	TM30/PM17							
Dissolved Antimony (A10)*	0.0068	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.0025	<0.0025	<0.025	mg/kg mg/l	TM30/PM17 TM30/PM17
Dissolved Arsenic # Dissolved Arsenic (A10) #	0.068	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	mg/kg	TM30/PM17
Dissolved Barium#	0.007	0.024	<0.003	<0.003	0.005	0.003	0.003	0.032	0.031	<0.003	mg/l	TM30/PM17
Dissolved Barium (A10)#	0.07	0.24	<0.03	<0.03	0.05	<0.03	<0.03	0.32	0.31	<0.03	mg/kg	TM30/PM17
Dissolved Cadmium#	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10)#	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/kg	TM30/PM17
Dissolved Chromium#	0.0094	0.0662	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10)#	0.094	0.662	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	mg/kg	TM30/PM17
Dissolved Copper#	0.032	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	mg/l	TM30/PM17
Dissolved Copper (A10)#	0.32	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	TM30/PM17
Dissolved Lead #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/l	TM30/PM17
Dissolved Lead (A10)#	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum#	0.006	0.002	0.012	0.010	0.018	0.010	0.012	0.011	0.014	<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10) #	0.06	<0.02	0.12	0.10	0.18	0.10	0.12	0.11	0.14	<0.02	mg/kg	TM30/PM17
Dissolved Nickel #	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10)#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	TM30/PM17
Dissolved Selenium#	<0.003	<0.003 <0.03	<0.003	<0.003 <0.03	<0.003	<0.003	<0.003 <0.03	<0.003 <0.03	0.009	<0.003	mg/l	TM30/PM17 TM30/PM17
Dissolved Selenium (A10) # Dissolved Zinc#	<0.003	0.003	0.004	0.004	0.004	0.004	0.004	0.003	0.003	<0.003	mg/kg mg/l	TM30/PM17
Dissolved Zinc (A10)#	<0.03	<0.03	0.04	0.04	0.04	0.04	0.04	0.03	<0.03	<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF #	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF #	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	mg/kg	TM61/PM0
Total Phenols HPLC	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/l	TM26/PM0
Total Phenols HPLC	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	mg/kg	TM26/PM0
Fluoride	<0.3	<0.3	0.3	<0.3	<0.3	0.4	0.4	0.3	<0.3	<0.3	mg/l	TM173/PM0
Fluoride	<3	<3	<3	<3	<3	4	4	3	<3	<3	mg/kg	TM173/PM0
									-		3 3	
Sulphate as SO4#	7.6	16.3	7.1	0.8	2.2	0.9	1.1	11.3	32.5	<0.5	mg/l	TM38/PM0
Sulphate as SO4#	76	163	71	8	22	9	11	113	325	<5	mg/kg	TM38/PM0
Chloride#	2.7	9.7	1.1	1.2	1.3	<0.3	0.3	0.4	0.8	<0.3	mg/l	TM38/PM0
Chloride#	27	97	11	12	13	<3	<3	4	8	<3	mg/kg	TM38/PM0
Discolved Organia Carl an	4	-0	2	2	•	•	2	•	2	-0		TM60/DM40
Dissolved Organic Carbon Dissolved Organic Carbon	4	<2 <20	3	3	3	3	2 <20	3	3 30	<2 <20	mg/l mg/kg	TM60/PM0 TM60/PM0
Total Dissolved Solids #	179	308	68	<35	43	55	47	77	91	<35	mg/l	TM20/PM0
Total Dissolved Solids Total Dissolved Solids **	1790	3079	680	<350	430	550	470	770	910	<350	mg/kg	TM20/PM0
. S.di Dissolved Golids		22.0									-5.119	

Mass of sample taken (kg)	-	Dry Matter Content Ratio (%) =		88.2	
Mass of dry sample (kg) =	0.09	Leachant Volume (I)		-	
Particle Size <4mm =	>95%				
EMT Job No		20/15509	Land	fill Waste Ac	ceptance
Sample No		3		Criteria Lin	nits
Client Sample No		R15-CP02			
Depth/Other		0.50			
Sample Date		06/11/2020	Inert	Stable Non-reactive	Hazardou
Batch No		1			
Solid Waste Analysis					
Total Organic Carbon (%)	0.21		3	5	6
Sum of BTEX (mg/kg)	<0.025		6	-	-
Sum of 7 PCBs (mg/kg)	<0.035		1	-	-
Mineral Oil (mg/kg) (EH_CU_1D_Total)	<30		500	-	-
PAH Sum of 6 (mg/kg)	-		-	-	-
PAH Sum of 17 (mg/kg)	<0.64		100	-	-
	10:1 concn leached			values for co	
Eluate Analysis	A10			l 12457-2 at	_
	mg/kg			mg/kg	
Arsenic	0.068		0.5	2	25
Barium	0.07		20	100	300
	<0.005			4	5
Cadmium	<0.005		0.04	1	
Cadmium Chromium	0.005		0.04	10	70
					70 100
Chromium	0.094		0.5	10	-
Chromium Copper Mercury	0.094		0.5	10 50	100
Chromium Copper Mercury Molybdenum	0.094 0.32 <0.0001		0.5 2 0.01	10 50 0.2	100
Chromium Copper Mercury Molybdenum	0.094 0.32 <0.0001 0.06		0.5 2 0.01 0.5	10 50 0.2 10	100 2 30
Chromium Copper Mercury Molybdenum Nickel	0.094 0.32 <0.0001 0.06 <0.02		0.5 2 0.01 0.5 0.4	10 50 0.2 10	100 2 30 40
Chromium Copper Mercury Molybdenum Nickel Lead Antimony	0.094 0.32 <0.0001 0.06 <0.02 <0.05		0.5 2 0.01 0.5 0.4 0.5	10 50 0.2 10 10	100 2 30 40 50
Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium	0.094 0.32 <0.0001 0.06 <0.02 <0.05 <0.02		0.5 2 0.01 0.5 0.4 0.5 0.06	10 50 0.2 10 10 10 0.7	100 2 30 40 50 5
Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium	0.094 0.32 <0.0001 0.06 <0.02 <0.05 <0.02		0.5 2 0.01 0.5 0.4 0.5 0.06	10 50 0.2 10 10 10 0.7 0.5	100 2 30 40 50 5
Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc	0.094 0.32 <0.0001 0.06 <0.02 <0.05 <0.02 <0.03 <0.03		0.5 2 0.01 0.5 0.4 0.5 0.06 0.1	10 50 0.2 10 10 10 0.7 0.5 50	100 2 30 40 50 5 7 200
Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride	0.094 0.32 <0.0001 0.06 <0.02 <0.05 <0.02 <0.03 <0.03		0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800	10 50 0.2 10 10 10 0.7 0.5 50 15000	100 2 30 40 50 5 7 200 25000
Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride	0.094 0.32 <0.0001 0.06 <0.02 <0.05 <0.02 <0.03 <0.03		0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800	10 50 0.2 10 10 10 0.7 0.5 50 15000	100 2 30 40 50 5 7 200 25000 500
Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Sulphate as SO4	0.094 0.32 <0.0001 0.06 <0.02 <0.05 <0.02 <0.03 <0.03 27 <3 76		0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800 10	10 50 0.2 10 10 10 0.7 0.5 50 15000 20000	100 2 30 40 50 5 7 200 25000 500 50000

Mass of sample taken (kg)	-	Dry Matter Content Ratio (%) =		85.1	
Mass of dry sample (kg) =	0.09	Leachant Volume (I)		-	
Particle Size <4mm =	>95%				
EMT Job No		20/15509	Land	fill Waste Ac	ceptance
Sample No		6		Criteria Lin	-
Client Sample No		R15-CP03			
Depth/Other		0.50			
Sample Date		05/11/2020	Inert	Stable Non-reactive	Hazardous
Batch No		1		Non-reactive	
Solid Waste Analysis	-				
Total Organic Carbon (%)	0.92		3	5	6
Sum of BTEX (mg/kg)	<0.025		6	-	-
Sum of 7 PCBs (mg/kg)	< 0.035		1	-	-
Mineral Oil (mg/kg) (EH_CU_1D_Total)	<30		500	-	-
PAH Sum of 6 (mg/kg)	-		-	-	-
PAH Sum of 17 (mg/kg)	14.08		100	-	-
	10:1				
	concn			values for co eaching test	
Eluate Analysis	leached			1 12457-2 at	
	A10		30 2.1		
	mg/kg			mg/kg	
Arsenic	<0.025		0.5	2	25
Barium	0.24		20	100	300
Cadmium	<0.005		0.04	1	5
Chromium	0.662		0.5	10	70
Copper	<0.07		2	50	100
Mercury	<0.0001		0.01	0.2	2
Molybdenum	<0.02		0.5	10	30
Nickel	<0.02		0.4	10	40
Lead	<0.05		0.5	10	50
Antimony	<0.02		0.06	0.7	5
Selenium	<0.03		0.1	0.5	7
Zinc	<0.03		4	50	200
Chloride	97		800	15000	25000
Fluoride	<3		10	150	500
Sulphate as SO4	163		1000	20000	50000
Total Dissolved Solids	3079		4000	60000	100000
			1	_	-
Phenol	-		<u> </u>		

Mass of sample taken (kg)	-	Dry Matter Content Ratio (%) =		86.9	
Mass of dry sample (kg) =	0.09	Leachant Volume (I)		-	
Particle Size <4mm =	>95%	(/			
EMT Job No		20/15509	Land	fill Waste Ac	ceptance
Sample No		9		Criteria Lin	-
Client Sample No		R15-CP03			
Depth/Other		1.50			
Sample Date		05/11/2020	Inert	Stable Non-reactive	Hazardous
Batch No		1		Tron rouding	
Solid Waste Analysis					
Total Organic Carbon (%)	0.41		3	5	6
Sum of BTEX (mg/kg)	<0.025		6	-	-
Sum of 7 PCBs (mg/kg)	<0.035		1	-	-
Mineral Oil (mg/kg) (EH_CU_1D_Total)	<30		500	-	-
PAH Sum of 6 (mg/kg)	-		-	-	-
PAH Sum of 17 (mg/kg)	9.02		100	-	-
	10:1			•	•
	concn			values for co	
Eluate Analysis	leached			aching test 12457-2 at	
	A10		DO LIV	12451-2 at	L/3 IU I/Kg
	mg/kg			mg/kg	
Arsenic	<0.025		0.5	2	25
Barium	<0.03		20	100	300
Cadmium	<0.005		0.04	1	5
Chromium	<0.015		0.5	10	70
Copper	<0.07		2	50	100
Mercury	<0.0001		0.01	0.2	2
Molybdenum	0.12		0.5	10	30
Nickel	<0.02		0.4	10	40
Lead	< 0.05		0.5	10	50
Antimony	<0.02		0.06	0.7	5
Selenium	<0.03		0.1	0.5	7
Zinc	0.04		4	50	200
Chloride	11		800	15000	25000
Fluoride	<3		10	150	500
Sulphate as SO4	71		1000	20000	50000
Total Dissolved Solids	680		4000	60000	100000
Phenol	-		1	-	-
Dissolved Organic Carbon	30		500	800	1000
-					

Mass of sample taken (kg)	-	Dry Matter Content Ratio (%) =		88.9	
Mass of dry sample (kg) =	0.09	Leachant Volume (I)		-	
Particle Size <4mm =	>95%	(//			
EMT Job No		20/15509	Land	fill Waste Ac	ceptance
Sample No		12	1	Criteria Lin	•
Client Sample No		R15-CP03			
Depth/Other		2.50	1		
Sample Date		05/11/2020	Inert	Stable Non-reactive	Hazardous
Batch No		1		Tron rodonivo	
Solid Waste Analysis		_			
Total Organic Carbon (%)	0.30		3	5	6
Sum of BTEX (mg/kg)	<0.025		6	-	-
Sum of 7 PCBs (mg/kg)	<0.035		1	-	-
Mineral Oil (mg/kg) (EH_CU_1D_Total)	<30		500	-	-
PAH Sum of 6 (mg/kg)	-		-	-	-
PAH Sum of 17 (mg/kg)	< 0.64		100	-	-
	10:1		Limit	values for co	ampliance
	concn			eaching test	
Eluate Analysis	leached			12457-2 at	
	A10				
	mg/kg			mg/kg	ı
Arsenic	<0.025		0.5	2	25
Barium	<0.03		20	100	300
Cadmium	<0.005		0.04	1	5
Chromium	<0.015		0.5	10	70
Copper	<0.07		2	50	100
Mercury	<0.0001		0.01	0.2	2
Molybdenum	0.10		0.5	10	30
Nickel	<0.02		0.4	10	40
Lead	<0.05		0.5	10	50
Antimony	<0.02		0.06	0.7	5
Selenium	<0.03		0.1	0.5	7
Zinc	0.04		4	50	200
Chloride	12		800	15000	25000
Fluoride	<3		10	150	500
Sulphate as SO4	8		1000	20000	50000
Total Dissolved Solids	<350		4000	60000	100000
Phenol	-		1	-	-
Dissolved Organic Carbon	30		500	800	1000

Mass of sample taken (kg)	-	Dry Matter Content Ratio (%) =		88.6	
Mass of dry sample (kg) =	0.09	Leachant Volume (I)		-	
Particle Size <4mm =	>95%	\			
EMT Job No	T	20/15509	Land	fill Waste Ac	ceptance
Sample No		15		Criteria Lin	
Client Sample No	1	R15-CP03			
Depth/Other		3.50			
Sample Date		05/11/2020	Inert	Stable Non-reactive	Hazardous
Batch No		1		Nonreactive	
Solid Waste Analysis					
Total Organic Carbon (%)	0.31		3	5	6
Sum of BTEX (mg/kg)	<0.025		6	-	-
Sum of 7 PCBs (mg/kg)	<0.035		1	-	-
Mineral Oil (mg/kg) (EH_CU_1D_Total	l) <30		500	-	-
PAH Sum of 6 (mg/kg)	-		-	-	-
PAH Sum of 17 (mg/kg)	<0.64		100	-	-
	10:1				
	concn			values for co	
Eluate Analysis	leached			eaching test I 12457-2 at	
	A10		50 2.1	1 12-01 2 ut	LIO IO II NG
	mg/kg			mg/kg	
Arsenic	<0.025		0.5	2	25
Barium	0.05		20	100	300
			20	100	
Cadmium	<0.005		0.04	100	5
Cadmium Chromium					5 70
	<0.005		0.04	1	
Chromium	<0.005 <0.015		0.04	1 10	70
Chromium Copper	<0.005 <0.015 <0.07		0.04 0.5 2	1 10 50	70 100
Chromium Copper Mercury	<0.005 <0.015 <0.07 <0.0001		0.04 0.5 2 0.01	1 10 50 0.2	70 100 2
Chromium Copper Mercury Molybdenum	<0.005 <0.015 <0.07 <0.0001 0.18		0.04 0.5 2 0.01 0.5	1 10 50 0.2 10	70 100 2 30
Chromium Copper Mercury Molybdenum Nickel	<0.005 <0.015 <0.07 <0.0001 0.18 <0.02		0.04 0.5 2 0.01 0.5 0.4	1 10 50 0.2 10	70 100 2 30 40
Chromium Copper Mercury Molybdenum Nickel Lead	<0.005 <0.015 <0.07 <0.0001 0.18 <0.02 <0.05		0.04 0.5 2 0.01 0.5 0.4 0.5	1 10 50 0.2 10 10	70 100 2 30 40 50
Chromium Copper Mercury Molybdenum Nickel Lead Antimony	<0.005 <0.015 <0.07 <0.0001 0.18 <0.02 <0.05 <0.02		0.04 0.5 2 0.01 0.5 0.4 0.5 0.06	1 10 50 0.2 10 10 10 0.7	70 100 2 30 40 50
Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium	<0.005 <0.015 <0.07 <0.0001 0.18 <0.02 <0.05 <0.02		0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1	1 10 50 0.2 10 10 10 0.7 0.5	70 100 2 30 40 50 5
Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc	<0.005 <0.015 <0.07 <0.0001 0.18 <0.02 <0.05 <0.02 <0.03 0.04		0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4	1 10 50 0.2 10 10 10 0.7 0.5 50	70 100 2 30 40 50 5 7 200
Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride	<0.005 <0.015 <0.07 <0.0001 0.18 <0.02 <0.05 <0.02 <0.03 0.04		0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4	1 10 50 0.2 10 10 10 0.7 0.5 50 15000	70 100 2 30 40 50 5 7 200 25000
Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride	<0.005 <0.015 <0.07 <0.0001 0.18 <0.02 <0.05 <0.02 <0.03 0.04 13 <3		0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800 10	1 10 50 0.2 10 10 10 0.7 0.5 50 15000	70 100 2 30 40 50 5 7 200 25000 500
Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Sulphate as SO4	<0.005 <0.015 <0.007 <0.0001 0.18 <0.02 <0.05 <0.02 <0.03 0.04 13 <3 22		0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800 10	1 10 50 0.2 10 10 10 0.7 0.5 50 15000 20000	70 100 2 30 40 50 5 7 200 25000 5000

Mass of sample taken (kg)	-	Dry Matter Content Ratio (%) =		84.2	
Mass of dry sample (kg) =	0.09	Leachant Volume (I)		-	
Particle Size <4mm =	>95%	(
EMT Job No		20/15509	Land	fill Waste Ac	ceptance
Sample No		18		Criteria Lin	-
Client Sample No		R15-CP05			
Depth/Other		0.50			
Sample Date		04/11/2020	Inert	Stable Non-reactive	Hazardous
Batch No		1		Troil roudilvo	
Solid Waste Analysis		_			
Total Organic Carbon (%)	0.68		3	5	6
Sum of BTEX (mg/kg)	< 0.025		6	-	-
Sum of 7 PCBs (mg/kg)	< 0.035		1	-	-
Mineral Oil (mg/kg) (EH_CU_1D_Total)	<30		500	-	-
PAH Sum of 6 (mg/kg)	-		-	-	-
PAH Sum of 17 (mg/kg)	1.84		100	-	-
	10:1		Limit	volues for s	mulionoo
	concn			values for co aching test	
Eluate Analysis	leached			12457-2 at	
	A10				
	mg/kg			mg/kg	1
Arsenic	<0.025		0.5	2	25
Barium	<0.03		20	100	300
Cadmium	<0.005		0.04	1	5
Chromium	<0.015		0.5	10	70
Copper	<0.07		2	50	100
Mercury	<0.0001		0.01	0.2	2
Molybdenum	0.10		0.5	10	30
Nickel	<0.02		0.4	10	40
Lead	<0.05		0.5	10	50
Antimony	<0.02		0.06	0.7	5
Selenium 	<0.03		0.1	0.5	7
Zinc	0.04		4	50	200
Chloride	<3		800	15000	25000
Fluoride	4		10	150	500
Sulphate as SO4	9		1000	20000	50000
Total Dissolved Solids	550		4000	60000	100000
Phenol Dissolved Organic Carbon	30		500	800	1000

Mass of sample taken (kg)	-	Dry Matter Content Ratio (%) =		85.0	
Mass of dry sample (kg) =	0.09	Leachant Volume (I)		-	
Particle Size <4mm =	>95%	()			
EMT Job No		20/15509	Land	fill Waste Ac	ceptance
Sample No		21	1	Criteria Lim	-
Client Sample No		R15-CP05			
Depth/Other		1.50			
Sample Date		04/11/2020	Inert	Stable Non-reactive	Hazardous
Batch No		1		Tron readure	
Solid Waste Analysis		_			
Total Organic Carbon (%)	0.57		3	5	6
Sum of BTEX (mg/kg)	< 0.025		6	-	-
Sum of 7 PCBs (mg/kg)	<0.035		1	-	-
Mineral Oil (mg/kg) (EH_CU_1D_Total)	<30		500	-	-
PAH Sum of 6 (mg/kg)	-		-	-	•
PAH Sum of 17 (mg/kg)	<0.64		100	-	-
	10:1		Limit	values for a	mulionoo
	concn			values for co aching test	
Eluate Analysis	leached			12457-2 at I	
	A10				
	mg/kg			mg/kg	
Arsenic	<0.025		0.5	2	25
Barium	<0.03		20	100	300
Cadmium	<0.005		0.04	1	5
Chromium	<0.015		0.5	10	70
Copper	<0.07		2	50	100
Mercury	<0.0001		0.01	0.2	2
Molybdenum	0.12		0.5	10	30
Nickel	<0.02		0.4	10	40
Lead	<0.05		0.5	10	50
Antimony	<0.02		0.06	0.7	5
Selenium 	<0.03		0.1	0.5	7
Zinc	0.04		4	50	200
Chloride	<3		800	15000	25000
Fluoride	4		10	150	500
Sulphate as SO4	11		1000	20000	50000
Total Dissolved Solids	470		4000	60000	100000
Phenol	-		1		-
Dissolved Organic Carbon	<20		500	800	1000

Mass of sample taken (kg)	-	Dry Matter Content Ratio (%) =		84.5	
Mass of dry sample (kg) =	0.09	Leachant Volume (I)		-	
Particle Size <4mm =	>95%	· ·			
EMT Job No		20/15509	Land	fill Waste Ac	ceptance
Sample No		24		Criteria Lim	-
Client Sample No		R15-CP05			
Depth/Other		2.50			
Sample Date		04/11/2020	Inert	Stable Non-reactive	Hazardous
Batch No		1		Non rodolivo	
Solid Waste Analysis			1		
Total Organic Carbon (%)	0.56		3	5	6
Sum of BTEX (mg/kg)	<0.025		6	-	-
Sum of 7 PCBs (mg/kg)	< 0.035		1	-	-
Mineral Oil (mg/kg) (EH_CU_1D_Total)	<30		500	-	-
PAH Sum of 6 (mg/kg)	-		-	-	-
PAH Sum of 17 (mg/kg)	< 0.64		100	-	-
	10:1			•	
	concn			values for co	-
Eluate Analysis	leached			eaching test I 12457-2 at I	
	A10		DO LIV	1 12 4 57-2 at 1	_/3 10 //kg
	mg/kg			mg/kg	
Arsenic	< 0.025		0.5	2	25
					300
Barium	0.32		20	100	300
Barium Cadmium			20 0.04	100	5
	0.32				
Cadmium	0.32		0.04	1	5
Cadmium Chromium	0.32 <0.005 <0.015		0.04	1 10	5 70
Cadmium Chromium Copper	0.32 <0.005 <0.015 <0.07		0.04 0.5 2	1 10 50	5 70 100
Cadmium Chromium Copper Mercury	0.32 <0.005 <0.015 <0.07 <0.0001		0.04 0.5 2 0.01	1 10 50 0.2	5 70 100 2
Cadmium Chromium Copper Mercury Molybdenum	0.32 <0.005 <0.015 <0.07 <0.0001 0.11		0.04 0.5 2 0.01 0.5	1 10 50 0.2 10	5 70 100 2 30
Cadmium Chromium Copper Mercury Molybdenum Nickel	0.32 <0.005 <0.015 <0.07 <0.0001 0.11 <0.02		0.04 0.5 2 0.01 0.5 0.4	1 10 50 0.2 10	5 70 100 2 30 40
Cadmium Chromium Copper Mercury Molybdenum Nickel Lead	0.32 <0.005 <0.015 <0.07 <0.0001 0.11 <0.02 <0.05		0.04 0.5 2 0.01 0.5 0.4 0.5	1 10 50 0.2 10 10	5 70 100 2 30 40 50
Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony	0.32 <0.005 <0.015 <0.07 <0.0001 0.11 <0.02 <0.05 <0.02		0.04 0.5 2 0.01 0.5 0.4 0.5 0.06	1 10 50 0.2 10 10 10 0.7	5 70 100 2 30 40 50 5
Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium	0.32 <0.005 <0.015 <0.07 <0.0001 0.11 <0.02 <0.05 <0.02 <0.03		0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1	1 10 50 0.2 10 10 10 0.7 0.5	5 70 100 2 30 40 50 5
Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc	0.32 <0.005 <0.015 <0.07 <0.0001 0.11 <0.02 <0.05 <0.02 <0.03		0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1	1 10 50 0.2 10 10 10 0.7 0.5 50	5 70 100 2 30 40 50 5 7 200
Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride	0.32 <0.005 <0.015 <0.007 <0.0001 0.11 <0.02 <0.05 <0.02 <0.03 0.03		0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4	1 10 50 0.2 10 10 10 0.7 0.5 50 15000	5 70 100 2 30 40 50 5 7 200 25000
Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride	0.32 <0.005 <0.015 <0.07 <0.0001 0.11 <0.02 <0.05 <0.02 <0.03 0.03 4		0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800 10	1 10 50 0.2 10 10 10 0.7 0.5 50 15000	5 70 100 2 30 40 50 5 7 200 25000 500
Cadmium Chromium Copper Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Sulphate as SO4	0.32 <0.005 <0.015 <0.07 <0.0001 0.11 <0.02 <0.05 <0.02 <0.03 0.03 4 3 113		0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800 10	1 10 50 0.2 10 10 10 0.7 0.5 50 15000 20000	5 70 100 2 30 40 50 5 7 200 25000 500 50000

Mass of sample taken (kg)	-	Dry Matter Content Ratio (%) =		84.2	
Mass of dry sample (kg) =	0.09	Leachant Volume (I)		-	
Particle Size <4mm =	>95%				
EMT Job No		20/15509	Land	fill Waste Ac	ceptance
Sample No		27		Criteria Lin	•
Client Sample No		R15-CP05			
Depth/Other		3.50			
Sample Date		04/11/2020	Inert	Stable Non-reactive	Hazardous
Batch No		1		Nonreactive	
Solid Waste Analysis					
Total Organic Carbon (%)	0.54		3	5	6
Sum of BTEX (mg/kg)	<0.025		6	-	-
Sum of 7 PCBs (mg/kg)	< 0.035		1	-	-
Mineral Oil (mg/kg) (EH_CU_1D_Total	<30		500	-	-
PAH Sum of 6 (mg/kg)	-		-	-	-
PAH Sum of 17 (mg/kg)	<0.64		100	-	-
	10:1			•	
	concn			values for co	
Eluate Analysis	leached			eaching test I 12457-2 at I	
	A10		B3 LIV	1 12431-2 at	L/3 TO I/Kg
	mg/kg			mg/kg	
Arsenic	<0.025		0.5	2	25
Barium	0.31		20	100	300
Cadmium	<0.005		0.04	1	5
Chromium	<0.015		0.5	10	70
_					
Copper	< 0.07		2	50	100
Copper Mercury	<0.07		2 0.01	50 0.2	100 2
			-		
Mercury	<0.0001		0.01	0.2	2
Mercury Molybdenum	<0.0001		0.01	0.2 10	2 30
Mercury Molybdenum Nickel	<0.0001 0.14 <0.02		0.01 0.5 0.4	0.2 10 10	2 30 40
Mercury Molybdenum Nickel Lead	<0.0001 0.14 <0.02 <0.05		0.01 0.5 0.4 0.5	0.2 10 10 10	2 30 40 50
Mercury Molybdenum Nickel Lead Antimony	<0.0001 0.14 <0.02 <0.05 0.06		0.01 0.5 0.4 0.5 0.06	0.2 10 10 10 0.7	2 30 40 50 5
Mercury Molybdenum Nickel Lead Antimony Selenium	<0.0001 0.14 <0.02 <0.05 0.06 0.09		0.01 0.5 0.4 0.5 0.06 0.1	0.2 10 10 10 0.7 0.5	2 30 40 50 5
Mercury Molybdenum Nickel Lead Antimony Selenium Zinc	<0.0001 0.14 <0.02 <0.05 0.06 0.09 <0.03		0.01 0.5 0.4 0.5 0.06 0.1	0.2 10 10 10 0.7 0.5 50	2 30 40 50 5 7 200
Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride	<0.0001 0.14 <0.02 <0.05 0.06 0.09 <0.03 8		0.01 0.5 0.4 0.5 0.06 0.1 4 800	0.2 10 10 10 0.7 0.5 50 15000	2 30 40 50 5 7 200 25000
Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride	<0.0001 0.14 <0.02 <0.05 0.06 0.09 <0.03 8 <3		0.01 0.5 0.4 0.5 0.06 0.1 4 800	0.2 10 10 10 0.7 0.5 50 15000	2 30 40 50 5 7 200 25000 500
Mercury Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Sulphate as SO4	<0.0001 0.14 <0.02 <0.05 0.06 0.09 <0.03 8 <3 325		0.01 0.5 0.4 0.5 0.06 0.1 4 800 10	0.2 10 10 10 0.7 0.5 50 15000 20000	2 30 40 50 5 7 200 25000 500 5000

Client Name: Ground Investigations Ireland

Reference: 20/07/9754

Location: Bus Connects Route 15

Contact: John Duggan

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
20/15509	1	R15-CP02	0.50	2	11/12/2020	General Description (Bulk Analysis)	soil/stones
					11/12/2020	Asbestos Fibres	NAD
					11/12/2020	Asbestos ACM	NAD
					11/12/2020	Asbestos Type	NAD
					11/12/2020	Asbestos Level Screen	NAD
20/15509	1	R15-CP03	0.50	5	11/12/2020	General Description (Bulk Analysis)	soil/stones
					11/12/2020	Asbestos Fibres	NAD
					11/12/2020	Asbestos ACM	NAD
					11/12/2020	Asbestos Type	NAD
					11/12/2020	Asbestos Level Screen	NAD
20/15509	1	R15-CP03	1.50	8	11/12/2020	General Description (Bulk Analysis)	Soil/Stones
					11/12/2020	Asbestos Fibres	NAD
					11/12/2020	Asbestos ACM	NAD
					11/12/2020	Asbestos Type	NAD
					11/12/2020	Asbestos Level Screen	NAD
20/15509	1	R15-CP03	2.50	11	11/12/2020	General Description (Bulk Analysis)	Soil/Stones
					11/12/2020	Asbestos Fibres	NAD
					11/12/2020	Asbestos ACM	NAD
					11/12/2020	Asbestos Type	NAD
					11/12/2020	Asbestos Level Screen	NAD
20/15509	1	R15-CP03	3.50	14	11/12/2020	General Description (Bulk Analysis)	Soil/Stones
					11/12/2020	Asbestos Fibres	NAD
					11/12/2020	Asbestos ACM	NAD
					11/12/2020	Asbestos Type	NAD
					11/12/2020	Asbestos Level Screen	NAD
20/15509	1	R15-CP05	0.50	17	11/12/2020	General Description (Bulk Analysis)	Soil/Stones
					11/12/2020	Asbestos Fibres	NAD
					11/12/2020	Asbestos ACM	NAD
					11/12/2020	Asbestos Type	NAD
					11/12/2020	Asbestos Level Screen	NAD
20/15509	1	R15-CP05	1.50	20	11/12/2020	General Description (Bulk Analysis)	Soil/Stone
					11/12/2020	Asbestos Fibres	NAD
					11/12/2020	Asbestos ACM	NAD

Client Name: Ground Investigations Ireland

Reference: 20/07/9754

Location: Bus Connects Route 15

Contact: John Duggan

			oom ba	-			
EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
20/15509	1	R15-CP05	1.50	20	11/12/2020	Asbestos Type	NAD
20/15509	- '	K13-CF03	1.50	20			
					11/12/2020	Asbestos Level Screen	NAD
20/15509	1	R15-CP05	2.50	23		General Description (Bulk Analysis)	Soil/Stone
						Asbestos Fibres	NAD
						Asbestos Fibres (2)	NAD
						Asbestos ACM	NAD
						Asbestos ACM (2)	NAD
						Asbestos Type	NAD
						Asbestos Type (2)	NAD
					11/12/2020	Asbestos Level Screen	NAD
20/15509	1	R15-CP05	3.50	26	11/12/2020	General Description (Bulk Analysis)	Soil/Stones
					11/12/2020	Asbestos Fibres	NAD
					11/12/2020	Asbestos ACM	NAD
					11/12/2020	Asbestos Type	NAD
					11/12/2020	Asbestos Level Screen	NAD

Notification of Deviating Samples

Client Name: Ground Investigations Ireland Matrix : Solid

Reference: 9754-07-20

Location: Bus Connects Route 15

Contact: John Duggan

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
20/15509	1	R15-CP02	0.50	1-3	Cyanide, EPH, GRO, LOI, PAH, PCB, pH, TOC	Sample holding time exceeded
20/15509	1	R15-CP03	0.50	4-6	Cyanide, EPH, GRO, LOI, PAH, PCB, pH, TOC	Sample holding time exceeded
20/15509	1	R15-CP03	1.50	7-9	Cyanide, EPH, GRO, LOI, PAH, PCB, pH, TOC	Sample holding time exceeded
20/15509	1	R15-CP03	2.50	10-12	Cyanide, EPH, GRO, LOI, PAH, PCB, pH, TOC	Sample holding time exceeded
20/15509	1	R15-CP03	3.50	13-15	Cyanide, EPH, GRO, LOI, PAH, PCB, pH, TOC	Sample holding time exceeded
20/15509	1	R15-CP05	0.50	16-18	Cyanide, EPH, GRO, LOI, PAH, PCB, pH, TOC	Sample holding time exceeded
20/15509	1	R15-CP05	1.50	19-21	Cyanide, EPH, GRO, LOI, PAH, PCB, pH, TOC	Sample holding time exceeded
20/15509	1	R15-CP05	2.50	22-24	Cyanide, EPH, GRO, LOI, PAH, PCB, pH, TOC	Sample holding time exceeded
20/15509	1	R15-CP05	3.50	25-27	Cyanide, EPH, GRO, LOI, PAH, PCB, pH, TOC	Sample holding time exceeded

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/15509

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCl (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 20/15509

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics extracted.
#2	EU_Total but with fatty acids extracted.
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes
TM22	Modified BS1377-3:1990 Gravimetric determination of Loss on Ignition by temperature controlled Muffle Furnace (35C-440C). On request modified ASTM D2974-00 LOI (105C-440C)	PM0	No preparation is required.	Yes		AD	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM65	Asbestos Bulk Identification method based on HSG 248 First edition (2006)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide, Sulphide and Thiocyanate analysis.	Yes		AR	Yes
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention: John Duggan

Date: 3rd December, 2020

Your reference: 9754-07-20

Our reference : Test Report 20/16406 Batch 1

Location : BusConnects Route 15

Date samples received : 23rd November, 2020

Status: Final report

Issue:

Six samples were received for analysis on 23rd November, 2020 of which six were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Bruce Leslie Project Manager

Please include all sections of this report if it is reproduced

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: BusConnects Route 15

Contact: John Duggan
EMT Joh No: 20/16406

Report : Solid

EMT Job No:	20/16406										
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18					
Sample ID	R15 TP01	R15 TP01	R15 TP01	R15 TP02	R15 TP02	R15 TP02					
Depth	0.50	1.50	2.30	0.50	1.50	2.40			Please se	e attached n	otes for all
COC No / misc										ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT					
Sample Date				19/11/2020							
-											
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil			<u> </u>		
Batch Number	1	1	1	1	1	1			LOD/LOR	Units	Method
Date of Receipt	23/11/2020	23/11/2020	23/11/2020	23/11/2020	23/11/2020	23/11/2020					No.
Antimony	2	9	4	3	6	8			<1	mg/kg	TM30/PM15
Arsenic #	11.1	11.4	16.3	19.0	21.5	29.6			<0.5	mg/kg	TM30/PM15
Barium #	89	81	283	240	358	445			<1	mg/kg	TM30/PM15
Cadmium #	2.0	1.8	1.4	1.2	1.2	2.0			<0.1	mg/kg	TM30/PM15
Chromium #	23.8	21.0	32.8	40.2	40.1	39.7			<0.5	mg/kg	TM30/PM15
Copper#	24	26	40	97	114	129			<1	mg/kg	TM30/PM15
Lead [#]	30	55	381	268	364	508			<5	mg/kg	TM30/PM15
Mercury #	<0.1	<0.1	0.2	0.2	0.4	0.3			<0.1	mg/kg	TM30/PM15
Molybdenum #	2.7	2.4	1.9	2.7	2.4	4.4			<0.1	mg/kg	TM30/PM15
Nickel #	33.3	29.9	27.3	35.3	32.8	43.8			<0.7	mg/kg	TM30/PM15
Selenium #	2	<1	<1	1	1	1			<1	mg/kg	TM30/PM15
Zinc#	104	83	637	230	355	886			<5	mg/kg	TM30/PM15
PAH MS											
Naphthalene #	<0.04	<0.04	0.07	0.30	<0.20 _{AA}	0.11			<0.04	mg/kg	TM4/PM8
Acenaphthylene	0.04	<0.03	0.12	0.45	1.17 _{AA}	0.58			<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	0.14	0.52	<0.25 _{AA}	0.14			<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04	0.12	0.40	<0.20 _{AA}	0.15			<0.04	mg/kg	TM4/PM8
Phenanthrene #	0.20	0.23	1.21	5.67	0.74 _{AA}	1.71			<0.03	mg/kg	TM4/PM8
Anthracene #	0.09	0.08	0.34	1.32	1.30 _{AA}	1.18			<0.04	mg/kg	TM4/PM8
Fluoranthene #	0.42	0.38	3.30	10.95	13.84 _{AA}	8.21			<0.03	mg/kg	TM4/PM8
Pyrene #	0.39	0.33	3.06	9.16	17.53 _{AA}	8.61			<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	0.25	0.19	1.46	5.03	17.59 _{AA}	8.48			<0.06	mg/kg	TM4/PM8
Chrysene #	0.28	0.19	1.95	5.63	15.14 _{AA}	7.87			<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	0.52	0.34	3.06	9.49	29.71 _{AA}	14.14			<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	0.27	0.18	1.58	4.97	13.92 _{AA}	7.10			<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene	0.22	0.14	1.06	3.38	11.03 _{AA}	4.99			<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	0.05	<0.04	0.29	0.81	2.90 _{AA}	1.46			<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	0.25	0.15	1.23	3.80	11.46 _{AA}	5.16			<0.04	mg/kg	TM4/PM8
Coronene	0.04	<0.04	0.19	0.64	2.35 _{AA}	0.75			<0.04	mg/kg	TM4/PM8
PAH 17 Total	3.02	2.21	19.18	62.52	138.68 _{AA}	70.64			<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	0.37	0.24	2.20	6.83	21.39 _{AA}	10.18			<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	0.15	0.10	0.86	2.66	8.32 _{AA}	3.96			<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	88	74	84	88	87 _{AA}	86			<0	%	TM4/PM8
Mineral Oil (C10-C40) (EH_CU_1D_Total)	41	70	71	72	184	69			<30	mg/kg	TM5/PM8/PM16
	ī	ī	ī	ī	ī	ī	ì			ì	

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: BusConnects Route 15

Contact: John Duggan EMT Job No: 20/16406

Report : Solid

EMT Job No:	20/16406										
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18					
Sample ID	R15 TP01	R15 TP01	R15 TP01	R15 TP02	R15 TP02	R15 TP02					
Depth	0.50	1.50	2.30	0.50	1.50	2.40			Please se	e attached n	otes for all
COC No / misc										ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT					
Sample Date	19/11/2020	19/11/2020	19/11/2020	19/11/2020	19/11/2020	19/11/2020					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil					
	1										
Batch Number		1	1	1	1	1			LOD/LOR	Units	Method No.
Date of Receipt	23/11/2020	23/11/2020	23/11/2020	23/11/2020	23/11/2020	23/11/2020					
TPH CWG Aliphatics											
>C5-C6 (HS_1D_AL) #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{sv}			<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 sv			<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 sv			<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_1D_AL) #	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_1D_AL)#	<4	<4	<4	<4	<4	<4			<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH_1D_AL) #	<7	9	<7	<7	23	10			<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_1D_AL)#	41	51	62	61	143	59			<7	mg/kg	TM5/PM8/PM16
>C35-C40 (EH_1D_AL)	<7	10	9	11	18	<7			<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40 (EH+HS_1D_AL) > C6-C10 (HS_1D_AL)	41 <0.1	70 <0.1	71 <0.1	72 <0.1	184 <0.1	69 <0.1 sv			<26 <0.1	mg/kg	тмэтмэв/РмвРм12/Рм18
>C10-C25 (EH_1D_AL)	18	23	25	21	63	26			<10	mg/kg mg/kg	TM5/PM8/PM16
>C25-C35 (EH_1D_AL)	30	41	46	48	107	43			<10	mg/kg	TM5/PM8/PM16
Aromatics										0 0	
>C5-EC7 (HS_1D_AR) #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 sv			<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR) #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{sv}			<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR) #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{sv}			<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_1D_AR) #	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_1D_AR) #	<4	<4	<4	21	19	<4			<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_1D_AR) #	9 41	9	17 119	125 421	251	46 364			<7	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>EC21-EC35 (EH_1D_AR) * >EC35-EC40 (EH_1D_AR)	12	66 22	25	67	1285 151	49			<7 <7	mg/kg mg/kg	TM5/PM8/PM16
Total aromatics C5-40 (EH+HS_1D_AR)	62	97	161	634	1706	459			<26	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(C5-40) (EH+HS_CU_1D_Total)	103	167	232	706	1890	528			<52	mg/kg	TM5/TM36/PM8/PM12/PM16
>EC6-EC10 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{SV}			<0.1	mg/kg	TM36/PM12
>EC10-EC25 (EH_1D_AR)	16	19	45	265	652	146			<10	mg/kg	TM5/PM8/PM16
>EC25-EC35 (EH_1D_AR)	34	57	93	302	902	265			<10	mg/kg	TM5/PM8/PM16
*						ev					
MTBE#	<5	<5	<5	<5	<5	<5 ^{SV}			<5 .f	ug/kg	TM36/PM12
Benzene # Toluene #	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 ^{SV}			<5 <5	ug/kg	TM36/PM12 TM36/PM12
Ethylbenzene #	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5" SV			<5 <5	ug/kg ug/kg	TM36/PM12
m/p-Xylene #	<5	<5	<5	<5	<5	<5 <5			<5	ug/kg	TM36/PM12
o-Xylene #	<5	<5	<5	<5	<5	<5 <5			<5	ug/kg	TM36/PM12
PCB 28#	<5	<5	<5	<5	<5	<5			<5	ug/kg	TM17/PM8
PCB 52#	<5	<5	<5	<5	<5	<5			<5	ug/kg	TM17/PM8
PCB 101 #	<5	<5	<5	<5	<5	<5			<5	ug/kg	TM17/PM8
PCB 118 #	<5	<5	<5	<5	<5	<5			<5	ug/kg	TM17/PM8
PCB 138 #	<5	<5 .5	<5 .5	<5 .5	<5 .5	<5 .c			<5 .f	ug/kg	TM17/PM8
PCB 153 # PCB 180 #	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5			<5 <5	ug/kg ug/kg	TM17/PM8 TM17/PM8
Total 7 PCBs #	<35	<35	<35	<35	<35	<35			<35	ug/kg ug/kg	TM17/PM8
										- 33	,

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: BusConnects Route 15

Contact: John Duggan EMT Job No: 20/16406

Report : Solid

							 		ı		
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18					
Sample ID	R15 TP01	R15 TP01	R15 TP01	R15 TP02	R15 TP02	R15 TP02					
Depth	0.50	1.50	2.30	0.50	1.50	2.40			Please se	e attached n	otes for all
COC No / misc										ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT					
Sample Date	19/11/2020	19/11/2020	19/11/2020	19/11/2020	19/11/2020	19/11/2020					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1	1					Method
Date of Receipt	23/11/2020	23/11/2020	23/11/2020	23/11/2020	23/11/2020	23/11/2020			LOD/LOR	Units	No.
Natural Moisture Content	8.4	14.4	24.4	21.1	26.2	25.5			<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	7.8	12.6	19.6	17.4	20.8	20.3			<0.1	%	PM4/PM0
Hexavalent Chromium #	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3			<0.3	mg/kg	TM38/PM20
Chromium III	23.8	21.0	32.8	40.2	40.1	39.7			<0.5	mg/kg	NONE/NONE
Total Cyanide #	<0.5	<0.5	<0.5	<0.5	1.0	2.1			<0.5	mg/kg	TM89/PM45
Total Organic Carbon #	0.68	0.91	1.88	5.58	3.57	5.71			<0.02	%	TM21/PM24
Loss on Ignition # pH #	2.3	2.4	4.7	8.4	6.3	7.4			<1.0	%	TM22/PM0 TM73/PM11
рн	8.53	8.01	7.88	8.40	8.26	8.38			<0.01	pH units	TIVI7 3/PIVITI
Mass of raw test portion	0.0989	0.1024	0.129	0.1045	0.12	0.1185				kg	NONE/PM17
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09				kg	NONE/PM17
				_		_				_	

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: BusConnects Route 15

Contact: John Duggan EMT Job No: 20/16406

Report: CEN 10:1 1 Batch

EMI JOD NO:	20/16406										
EMT Sample No.	1-3	4-6	7-9	10-12	13-15	16-18					
Sample ID	R15 TP01	R15 TP01	R15 TP01	R15 TP02	R15 TP02	R15 TP02					
Depth	0.50	1.50	2.30	0.50	1.50	2.40					
COC No / misc										e attached n ations and a	
		=				=					
Containers	VJT	VJT	VJT	VJT	VJT	VJT					
Sample Date	19/11/2020	19/11/2020	19/11/2020	19/11/2020	19/11/2020	19/11/2020					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1	1			1.00 // 00	11.76	Method
Date of Receipt	23/11/2020	23/11/2020	23/11/2020	23/11/2020	23/11/2020	23/11/2020			LOD/LOR	Units	No.
Dissolved Antimony#	<0.002	0.005	0.014	0.014	0.006	0.012			<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10) #	<0.02	0.05	0.14	0.14	0.06	0.12			<0.02	mg/kg	TM30/PM17
Dissolved Arsenic#	<0.0025	0.0042	0.0059	0.0072	0.0072	0.0054			<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10) #	<0.025	0.042	0.059	0.072	0.072	0.054			<0.025	mg/kg	TM30/PM17
Dissolved Barium #	0.008	0.051	0.063	0.013	0.027	0.014			<0.003	mg/l	TM30/PM17
Dissolved Barium (A10) #	0.08	0.51	0.63	0.13	0.27	0.14			<0.03	mg/kg	TM30/PM17
Dissolved Cadmium#	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10) #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			<0.005	mg/kg	TM30/PM17
Dissolved Chromium #	<0.0015	<0.0015	<0.0015	0.0027	0.0107	0.0104			<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10) #	<0.015	<0.015	<0.015	0.027	0.107	0.104			<0.015	mg/kg	TM30/PM17
Dissolved Copper#	<0.007	<0.007	<0.007	0.008	0.011	<0.007			<0.007	mg/l	TM30/PM17 TM30/PM17
Dissolved Copper (A10) * Dissolved Lead *	<0.07 <0.005	<0.07 <0.005	<0.07 <0.005	0.08 <0.005	0.11	<0.07 <0.005			<0.07 <0.005	mg/kg mg/l	TM30/PM17
Dissolved Lead (A10) #	<0.05	<0.05	<0.05	<0.05	0.10	<0.05			<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum#	0.012	0.031	0.056	0.004	0.004	0.009			<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10) #	0.12	0.31	0.56	0.04	0.04	0.09			<0.02	mg/kg	TM30/PM17
Dissolved Nickel #	<0.002	0.002	<0.002	<0.002	0.002	<0.002			<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10) #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			<0.02	mg/kg	TM30/PM17
Dissolved Selenium#	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003			<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10) #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03			<0.03	mg/kg	TM30/PM17
Dissolved Zinc#	<0.003	0.003	0.008	0.008	0.011	0.007			<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10) #	<0.03	<0.03	0.08	0.08	0.11	0.07			<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF#	<0.00001	<0.00001	<0.00001	0.00001	0.00004	<0.00001			<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF #	<0.0001	<0.0001	<0.0001	0.0001	0.0004	<0.0001			<0.0001	mg/kg	TM61/PM0
Total Phenols HPLC	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			<0.05	ma/l	TM26/PM0
Total Phenois HPLC	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.05	mg/l mg/kg	TM26/PM0
Total Friendis Fil Eo	40.0	40.0	40.0	40.0	40.0	40.0			40.0	mg/kg	TIVIZO/T IVIO
Fluoride	<0.3	<0.3	0.3	0.4	<0.3	<0.3			<0.3	mg/l	TM173/PM0
Fluoride	<3	<3	3	4	<3	<3			<3	mg/kg	TM173/PM0
Sulphate as SO4#	17.4	10.7	8.0	1.3	8.3	13.6			<0.5	mg/l	TM38/PM0
Sulphate as SO4#	174	107	80	13	83	136			<5	mg/kg	TM38/PM0
Chloride #	0.8	2.6	2.3	<0.3	0.5	0.6			<0.3	mg/l	TM38/PM0
Chloride #	8	26	23	<3	5	6			<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	<2	4	6	5	4	5			<2	mg/l	TM60/PM0
Dissolved Organic Carbon	<20	40	60	50	40	50			<20	mg/kg	TM60/PM0
Total Dissolved Solids #	73	114	126	88	95	90			<35	mg/l	TM20/PM0
Total Dissolved Solids #	730	1139	1261	880	950	900			<350	mg/kg	TM20/PM0

Client Name: Ground Investigations Ireland

Reference: 9754-07-20 Location: BusConnects Route 15 Contact: John Duggan

Report : EN12457_2

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Job No: 20/16406 EMT Sample No. 10-12 16-18 Sample ID R15 TP01 R15 TP01 R15 TP01 R15 TP02 R15 TP02 R15 TP02

Sample ID	KIS IPUI	KIS IPOI	KIS IPUI	KIS IPU2	KIS IPUZ	KIS IPUZ								
Depth	0.50	1.50	2.30	0.50	1.50	2.40						Please se	e attached r	otes for all
COC No / misc													ations and a	
Containers	VJT	VJT	VJT	VJT	VJT	VJT								
Sample Date		19/11/2020	19/11/2020		19/11/2020									
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil				ı		1		Ī
Batch Number	1	1	1	1	1	1			Inert	Stable Non-	Hazardous	LOD LOR	Units	Method
Date of Receipt	23/11/2020	23/11/2020	23/11/2020	23/11/2020	23/11/2020	23/11/2020				reactive				No.
Solid Waste Analysis														
Total Organic Carbon "	0.68	0.91	1.88	5.58	3.57	5.71			3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025 ^{sv}			6	-	-	<0.025	mg/kg	TM36/PM12
Sum of 7 PCBs#	< 0.035	<0.035	<0.035	<0.035	<0.035	<0.035			1	-	-	< 0.035	mg/kg	TM17/PM8
Mineral Oil	41	70	71	72	184	69			500	-	-	<30	mg/kg	TM5/PM8/PM16
PAH Sum of 17	3.02	2.21	19.18	62.52	138.68 _{BA}	70.64			100	-	-	<0.64	mg/kg	TM4/PM8
05114041														
CEN 10:1 Leachate	<0.025	0.042	0.059	0.072	0.072	0.054			0.5	2	25	<0.025	mg/kg	TM30/PM17
Arsenic #		0.042			0.072	0.054								TM30/PM17
Barium #	0.08		0.63	0.13					20	100	300	<0.03	mg/kg	TM30/PM17 TM30/PM17
Cadmium "	<0.005 <0.015	<0.005 <0.015	<0.005 <0.015	<0.005 0.027	<0.005 0.107	<0.005 0.104			0.04	1 10	5 70	<0.005 <0.015	mg/kg	TM30/PM17
Chromium "													mg/kg	
Copper "	<0.07	<0.07	<0.07	0.08	0.11	<0.07			2	50	100	<0.07	mg/kg	TM30/PM17
Mercury #	<0.0001	<0.0001	<0.0001	0.0001	0.0004	<0.0001			0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum #	0.12	0.31	0.56	0.04	0.04	0.09			0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead #	<0.05	<0.05	<0.05	<0.05	0.10	<0.05			0.5	10	50	<0.05	mg/kg	TM30/PM17
Antimony *	<0.02	0.05	0.14	0.14	0.06	0.12			0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium "	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03			0.1	0.5	7	<0.03	mg/kg	TM30/PM17
Zinc #	<0.03	<0.03	0.08	0.08	0.11	0.07			4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids #	730	1139	1261	880	950	900			4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	<20	40	60	50	40	50			500	800	1000	<20	mg/kg	TM60/PM0
Mass of raw test portion	0.0989	0.1024	0.129	0.1045	0.12	0.1185			_	_	_		kg	NONE/PM17
Dry Matter Content Ratio	90.6	87.8	69.6	86.4	75.1	76.2			-			<0.1	%	NONE/PM4
Leachant Volume	0.891	0.887	0.861	0.886	0.87	0.872			-	_	_	Q0.1	/ ⁸	NONE/PM17
Eluate Volume	0.8	0.8	0.8	0.8	0.8	0.872			-	_			· ·	NONE/PM17
Eluate volume	0.6	0.0	0.0	0.6	0.6	0.6			-	-	-		'	NONE/PM17
pH#	8.53	8.01	7.88	8.40	8.26	8.38			-	-	-	<0.01	pH units	TM73/PM11
Fluoride	<3	<3	3	4	<3	<3			-	-	-	<3	mg/kg	TM173/PM0
												_		
Sulphate as SO4 #	174	107	80	13	83	136			1000	20000	50000	<5	mg/kg	TM38/PM0
Chloride #	8	26	23	<3	5	6			800	15000	25000	<3	mg/kg	TM38/PM0

Client Name: Ground Investigations Ireland

Reference: 20/07/9754

Location: BusConnects Route 15

Contact: John Duggan

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
20/16406	1	R15 TP01	0.50	2	01/12/2020	General Description (Bulk Analysis)	soil/stones
					01/12/2020	Asbestos Fibres	NAD
					01/12/2020	Asbestos ACM	NAD
					01/12/2020	Asbestos Type	NAD
					01/12/2020	Asbestos Level Screen	NAD
20/16406	1	R15 TP01	1.50	5	01/12/2020	General Description (Bulk Analysis)	soil/stones
					01/12/2020	Asbestos Fibres	NAD
					01/12/2020	Asbestos ACM	NAD
					01/12/2020	Asbestos Type	NAD
					01/12/2020	Asbestos Level Screen	NAD
20/16406	1	R15 TP01	2.30	8	01/12/2020	General Description (Bulk Analysis)	soil/stones
					01/12/2020	Asbestos Fibres	NAD
					01/12/2020	Asbestos ACM	NAD
					01/12/2020	Asbestos Type	NAD
					01/12/2020	Asbestos Level Screen	NAD
20/16406	1	R15 TP02	0.50	11	01/12/2020	General Description (Bulk Analysis)	soil/stones
					01/12/2020	Asbestos Fibres	NAD
					01/12/2020	Asbestos ACM	NAD
					01/12/2020	Asbestos Type	NAD
					01/12/2020	Asbestos Level Screen	NAD
20/16406	1	R15 TP02	1.50	14	01/12/2020	General Description (Bulk Analysis)	soil/stones
					01/12/2020	Asbestos Fibres	NAD
					01/12/2020	Asbestos ACM	NAD
					01/12/2020	Asbestos Type	NAD
					01/12/2020	Asbestos Level Screen	NAD
20/16406	1	R15 TP02	2.40	17	01/12/2020	General Description (Bulk Analysis)	soil/stones
					01/12/2020	Asbestos Fibres	NAD
					01/12/2020	Asbestos ACM	NAD
					01/12/2020	Asbestos Type	NAD
					01/12/2020	Asbestos Level Screen	NAD

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: BusConnects Route 15

Contact: John Duggan

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason							
	No deviating sample report results for job 20/16406												

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/16406

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory.

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 20/16406

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x5 Dilution

BA x5 Dilution

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes
TM22	Modified BS1377-3:1990 Gravimetric determination of Loss on Ignition by temperature controlled Muffle Furnace (35C-440C). On request modified ASTM D2974-00 LOI (105C-440C)	- PM0	No preparation is required.	Yes		AD	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM65	Asbestos Bulk Identification method based on HSG 248 First edition (2006)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide, Sulphide and Thiocyanate analysis.	Yes		AR	Yes
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention: John Duggan

Date: 4th December, 2020

Your reference: 9754-07-20

Our reference : Test Report 20/16727 Batch 1

Location : Bus Connect Route 15

Date samples received: 27th November, 2020

Status: Final report

Issue: 1

One sample was received for analysis on 27th November, 2020 of which one was scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Phil Sommerton BSc

Senior Project Manager

Please include all sections of this report if it is reproduced

Client Name: Ground Investigations Ireland

Reference: 9754-07-20

Location: Bus Connect Route 15

Contact: John Duggan EMT Job No: 20/16727

Report : Solid

LINIT JOB NO.	20/10/2/						_						
EMT Sample No.	1												
Sample ID	R15-CP06												
Depth	2.50						Please se	otes for all					
COC No / misc							Please see attached notes for abbreviations and acronyms						
Containers													
Sample Date	24/09/2020												
Sample Type													
Batch Number							LOD/LOR	Units	Method No.				
Date of Receipt							.0.000	-/1	TM38/PM20				
Chloride (2:1 Ext BRE) # Sulphate as SO4 (2:1 Ext) #	0.020 0.2184						<0.002 <0.0015	g/l g/l	TM38/PM20				
								3					
Organic Matter	2.4						<0.2	%	TM21/PM24				
pH#	7.74						<0.01	pH units	TM73/PM11				
									<u> </u>				

Notification of Deviating Samples

Client Name: Ground Investigations Ireland Matrix : Solid

Reference: 9754-07-20

Location: Bus Connect Route 15

Contact: John Duggan

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
20/16727	1	R15-CP06	2.50	1	Chloride, pH, Sulphate	Sample holding time exceeded prior to receipt

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/16727

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory.

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 20/16727

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ос	Outside Calibration Range

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.			AD	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993 (comparabl	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No